Helical tubular photobioreactor design using computational fluid dynamics

  • Arnol Smith García Barbosa Universidad Nacional de Colombia, Sede Medellín
  • Daniel Andres Antequera Cantillo Universidad Nacional de Colombia, Sede Medellín
  • Juan Pablo Arango Restrepo Universidad Nacional de Colombia, Sede Medellín
  • César Augusto Gómez Pérez Universidad Nacional de Colombia, Sede Medellín
  • Jairo José Espinosa Oviedo Universidad Nacional de Colombia, Sede Medellín
Keywords: Photobioreactors design, Energy comsuption, CFD, Pressure drop, Bend curvature


In this paper we present the design problem of helical tubular PhotoBioReactors (PBR) based on energy consumption minimization, using the radius of curvature for the cultivation of microalgae. Computational Fluid Dynamics (CFD) is used to design a configuration of the helical pipeline with minimum energy consumption. We determined how flow direction changes affect energy consumption. Additionally, it was found that the radius of curvature affects the pressure drop in the PBR’s pipe, so a cost function has been developed to solve an optimization problem seeking to obtain the optimum radius of curvature and a helical tubular PBR design with low pumping rates.

Author Biography

Jairo José Espinosa Oviedo, Universidad Nacional de Colombia, Sede Medellín

Departamento de energía eléctrica y automática

Facultad de Minas


Bosma, R., J. H. de Vree, P. M. Slegers, M. Janssen, R. H. Wijffels, and M. J. Barbosa, (2014). Design and construction of the microalgal pilot facility AlgaePARC, Algal Res., 6(PB), 160–169.

Norsker, N. H., M. J. Barbosa, M. H. Vermuë, and R. H. Wijffels, (2011). Microalgal production - A close look at the economics, Biotechnol. Adv., 29(1), 24–27.

Zhu, L. D., Z. B. Xu, L. Qin, Z. M. Wang, E. Hiltunen, and Z. H. Li, (2016). Oil production from pilot-scale microalgae cultivation: An economics evaluation, Energy Sources, Part B Econ. Plan. Policy, 11(1), 11–17.

Pires, J. C. M., M. C. M. Alvim-Ferraz, and F. G. Martins, (2017). Photobioreactor design for microalgae production through computational fluid dynamics: A review, Renew. Sustain. Energy Rev., 79(May), 248–254.

Gómez-Pérez, C. A., J. Espinosa, L. C. Montenegro Ruiz, and A. J. B. van Boxtel, (2015). CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters, Algal Res., 12.

Gómez-Pérez, C. A., J. J. Espinosa Oviedo, L. C. Montenegro Ruiz, and A. J. B. van Boxtel, (2017). Twisted tubular photobioreactor fluid dynamics evaluation for energy consumption minimization, Algal Res., 27.

Wongluang, P., Y. Chisti, and T. Srinophakun, (2013). Optimal hydrodynamic design of tubular photobioreactors, J. Chem. Technol. Biotechnol., 88(1), 55–61.

Fernández, I., F. G. Acién, M. Berenguel, and J. L. Guzmán, (2014). First principles model of a tubular photobioreactor for microalgal production, Ind. Eng. Chem. Res., 53(27), 11121–11136.

Acién Fernández, F. G., D. O. Hall, E. Cañizares Guerrero, K. Krishna Rao, and E. Molina Grima, (2003). Outdoor production of Phaeodactylum tricornutum biomass in a helical reactor, J. Biotechnol., 103(2), 137–152.

Hall, D. O., F. G. Acién Fernández, E. C. Guerrero, K. K. Rao, and E. M. Grima, (2003). Outdoor helical tubular photobioreactors for microalgal production: Modeling of fluid-dynamics and mass transfer and assessment of biomass productivity, Biotechnol. Bioeng., 82(1), 62–73.

Soletto, D. et al., (2008). Effects of carbon dioxide feeding rate and light intensity on the fed-batch pulse-feeding cultivation of Spirulina platensis in helical photobioreactor, Biochem. Eng. J., 39(2), 369–375.

Briassoulis, D. et al., (2010). An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp., Bioresour. Technol., 101(17), 6768–6777.

Matthes, S., M. Matschke, F. Cotta, J. Grossmann, and C. Griehl, (2015). Reliable production of microalgae biomass using a novel microalgae platform, J. Appl. Phycol., 27(5), 1755–1762.

Carvajal-Oses, M. D. M., J. Chacón-Guzmán, and Á. Herrera-Ulloa, (2018). Optimización en la producción de la microalga marina Nannochloropsis oculata en un fotobiorreactor tubular helicoidal, Rev. Tecnol. en Marcha, 31(2), 117.

da Silva, M. F. et al., (2016). A new bioenergetic and thermodynamic approach to batch photoautotrophic growth of Arthrospira (Spirulina) platensis in different photobioreactors and under different light conditions, Bioresour. Technol., 207, 220–228.

Romero Maza, L. D. los Á., M. Á. Guevara, B. J. Gómez, B. Arredondo-Vega, R. Cortez, and B. Licet, (2017). Producción de pigmentos procedentes de Arthrospira maxima cultivada en fotobiorreactores, Rev. Colomb. Biotecnol., 19(1), 108–114.

Multiphysics, C., (2012). Comsol Multiphysics user´s guide v-4.3. 39–40.

Liu, S., A. Afacan, H. A. Nasr-El-Din, and J. H. Masliyah, (1994). Experimental study of pressure drop in helical pipes, Proc. R. Soc. London, Ser. A Math. Phys. Sci., 444(1921), 307–316.

Itō, H., (1969). Laminar Flow in Curved Pipes, ZAMM ‐ J. Appl. Math. Mech. / Zeitschrift für Angew. Math. und Mech., 49(11), 653–663.

Srinivasan, P. S., S. S. Nandapukar, and F. A. Holland, (1968). Pressure drop and heat transfer in coils, Chem. Eng., 218, 113–119.

Sanchez Calvo, R., L. J. Sirgado, and A. L. Villasante, (2008). Consumo de energía con bombas de velocidad variable, in XXVI Congreso Nacional de Riegos, 1–10.

How to Cite
García Barbosa, A. S., Antequera Cantillo, D. A., Arango Restrepo, J. P., Gómez Pérez, C. A., & Espinosa Oviedo, J. J. (2020). Helical tubular photobioreactor design using computational fluid dynamics. CT&F - Ciencia, Tecnología Y Futuro, 10(1), 123-130. https://doi.org/10.29047/01225383.117


Download data is not yet available.
Scientific and Technological Research Articles