Application of a wax deposition model in oil production pipelines

  • Arlex Chaves Guerrero Universidad Industrial de Santander.
  • Diego Fernando Bautista Parada Universidad Industrial de Santander.
  • David Alfredo Fuentes Díaz Universidad Industrial de Santander.
  • Paola Gauthier Maradei Universidad Industrial de Santander.
Keywords: Paraffin deposition models, Flow assurance, Paraffinic crude oils, CFD, Crude oil transportation

Abstract

This work is aimed to study the wax deposition process on the internal surface of oil production pipelines and the influence of parameters such as flow rate and pipe wall temperature on the deposit thickness for a light crude oil with high paraffinic content considering three different temperature boundary conditions on the pipe wall; two of which assumed a profile temperature on the boundary, fact that has not been considered in previous works, and the third a constant value. The analysis was conducted assuming pseudo steady conditions on the fluid phase.  The finite differences method was applied to solve the differential equation system and the solution was implemented numerically using the C++ programming language. The model was validated with the experimental results reported by Singh et al. (2000) and subsequently used to simulate the growth of the paraffin deposits as a function of flow rate and pipe temperature. The results showed that increased flow rates reduce the maximum deposit thickness, as it spreads on a longer distance in the pipe when considering a constant wall temperature or the axial thermal gradient with a positive slope, and the opposite effect is observed when considering the axial thermal gradient with a negative slope.

References

Alcazar-Vara, L. A. & Buenrostro-Gonzalez, E. (2013). Liquid-solid phase equilibria of paraffinic systems by DSC measurements. In: Elkordy, A. A. Applications of calorimetry in a wide context - Differential Scanning Calorimetry, isothermal titration calorimetry and microcalorimetry. Rijeka: InTech. Chapter 11, 253-276.

Ariza, E. (2008). Determinación del umbral de cristalización de las parafinas en el crudo del Campo Colorado. Tesis de Maestría, Ingeniería de Petróleos, Universidad Industrial de Santander, Bucaramanga, Colombia, 93pp.

ASTM Standard D4419-90. Standard Test Method for Measurement of Transition Temperatures of Petroleum Waxes by Differential Scanning Calorimetry (DSC). Annual Book of ASTM Standards, Vol. 05.02, ASTM International, West Conshohocken, PA, 2010.

Burger, E., Perkins, T. & Striegler, J. (1981). Studies of wax deposition in the Trans Alaska pipeline. J. Petrol. Technol., 33(6), 1075-1086.
https://doi.org/10.2118/8788-PA

Coutinho, J. A. P. & Daridon, J. L. (2001). Low pressure modeling of wax formation in crude oils. Energy Fuels, 15(6), 1454-1460.
https://doi.org/10.1021/ef010072r

Coutinho, J. A. P., Mirante, F. & Pauly, J. (2006). A new predictive UNIQUAC for modeling of wax formation in hydrocarbon fluids. Fluid Phase Equilibr., 247(1-2), 8-17.
https://doi.org/10.1016/j.fluid.2006.06.002

Cussler, E. L., Hughes, S. E., Ward, W. J. & Aris, R. (1998). Barrier membranes. J. Membrane Sci., 38(2), 161-174.
https://doi.org/10.1016/S0376-7388(00)80877-7

Gjermundsen, I. (2006). State of the art: Wax precipitation deposition and aging in flowing hydrocarbon systems. Internal Report, Norsk Hydro ASA, Porsgrunn, Norway.

Hayduk, W. & Minhas, B. S. (1982). Correlations for prediction of molecular diffusivities in liquids. Can. J. Chem. Eng., 60(2), 295-299.
https://doi.org/10.1002/cjce.5450600213

Hovden, L., Rønningsen, H. P., Xu, Z. G., Labes-Carrier, C. & Rydahl, A. (2004). Pipeline wax deposition models and model for removal of wax by pigging: Comparison between model predictions and operational experience. 4th North American Conference on Multiphase Technology, Banff, Canada.

Huang, Z., Lee, H. S., Senra, M. & Fogler, H. S. (2011). A fundamental model of wax deposition in subsea oil pipelines. AIChE J., 57(11), 2955-2964.
https://doi.org/10.1002/aic.12517

Lee, H. S. (2007). Computational and rheological study of wax deposition and gelation in subsea pipelines. Ph.D Thesis, Chemical Engineering, University of Michigan, USA, 127pp.

Lu, Y., Huang, Z., Hoffmann, R., Amundsen, L. & Fogler, H. S. (2012). Counterintuitive effects of the oil flow rate on wax deposition. Energy Fuels, 26(7), 4091-4097.
https://doi.org/10.1021/ef3002789

Matzain, A., Apte, M. S., Zhang, H., Volk, M., Redus, C. L., Brill, J. P. & Creek, J. L. (2001). Multiphase flow wax deposition modeling. Proceedings Engineering Technology Conference on Energy. Houston, USA, ETCE 17114.
https://doi.org/10.1115/ETCE2001-17114

Rygg, O. B., Rydahl, A. K. & Rønningsen, H. P. (1998). Wax deposition in offshore pipeline systems. 1st North American Conference on Multiphase Technology, Banff, Canada.

Singh, P., Venkatesan, R., Fogler, H. S. & Nagarajan, N. (2000). Formation and aging of incipient thin film wax- oil gels. AIChE J., 46(5), 1059-1074.
https://doi.org/10.1002/aic.690460517

Svendsen, J. A. (1993). Mathematical modeling of wax deposition in oil pipeline systems, AIChE J., 39(8), 1377-1388.
https://doi.org/10.1002/aic.690390815

Tian, Z., Jin, W., Wang, L. & Jin, Z. (2014). The study of temperature profile inside wax deposition layer of waxy crude oil in pipeline. FHMT, 5(5), 1-8.
https://doi.org/10.5098/hmt.5.5
How to Cite
Chaves Guerrero, A., Bautista Parada, D. F., Fuentes Díaz, D. A., & Gauthier Maradei, P. (2015). Application of a wax deposition model in oil production pipelines. CT&F - Ciencia, Tecnología Y Futuro, 6(1), 29–42. https://doi.org/10.29047/01225383.25

Downloads

Download data is not yet available.
Published
2015-06-15
Section
Scientific and Technological Research Articles

Altmetric

QR Code