CFD Technique to calculate tube skin peak temperatures in refinery furnaces

  • Fabian A. Diaz Ambiocoop, S.A
  • Jesús A. Castro Ecopetrol – Instituto Colombiano del Petróleo, Piedecuesta, Colombia
Keywords: Multi-zone method, Furnace simulator, Heat fluxes, Radiation, Flame

Abstract

Tube skin peak temperature is one of the major parameters in furnaces operation since they determine the life of the tubes and the extent of an operation run. This parameter is very difficult to calculate appropriately in magnitude and location within the furnace and commercial furnace simulators usually fail in its calculation. Computational fluid dynamics (CFD) is the only technique that calculates peak skin temperatures with great precision and accuracy since radiation and convective heat fluxes can be calculated taking into account every singularity of the geometry of the furnace and the burners. In this work is developed a technique to calculate this parameter using CFD commercial code (Ansys Fluent) and an in-house furnace simulator (EcoFursim), results of the simulations are compared with data from different furnaces from Barrancabermeja refinery (Barrancabermeja, Colombia) and good agreement is observed. Refinery furnace is referred in this paper to fired heaters for non reacting heat up of hydrocarbons or petroleum crude.

References

Aladwani, H.A. & Riazi, M.R. (2005). Some guidelines for choosing a characterization method for petroleum fractions in process simulators. Chem. Eng. Res. Des. 83 (2), pp. 160 – 162.

Ansys Fluent 13 User’s Guide (2011). Canonsburg, Pennsylvania, USA. ANSYS, Inc.

API Technical Data Book – Petroleum Refining. (1997). American Petroleum Institute, 6Th edition.

Arrieta, A., Cadavid, F. & Amell, A. (2011). Simulación numérica de hornos de combustión equipados con quemadores radiantes. Ing. Univ. Bogotá, 15 (1), pp. 9 – 28.

Cant, R. S. & Mastorakos, E., (2008). An introduction to turbulent reacting flows. London: Imperial College Press.

Churchill, S.W. (1983). Free convection around immersed bodies. Heat Exchanger Design Handbook (2.5.7), New York: Hemisphere.

Diaz, F. A. & Castro, J. A. (2010). Mathematical model for refinery furnaces simulation. CT&F journal, 4 (1), pp. 89 – 99.

Habibi, A., Merci, B. & Heynderickx, G. J. (2007). Impact of radiation models in CFD simulations of steam cracking furnaces. Comp. Chem. Eng. 31, pp. 1389 – 1406.

Hewitt, G. F., Shires, G. L. & Bott, T. R. (1994). Process Heat transfer. CRC Press.

Heynderickx, G. J., Oprins, A. J. M., Marin, G. B. & Dick, E. (2001). Three-Dimensional Flow Patterns in Cracking Furnaces with Long-Flame Burners. AIChE Journal, 47(2), pp. 388 – 400.

Hottel, H. C. & Sarofim, A. F. (1967). Radiative transfer. New York: McGraw Hill.

Hottel, H. C. (1974). First estimates of industrial furnace performance, the one-gas-zone model re-examined. Heat Transfer in Flames, pp. 5 – 28.

Launder, B. E., & Spalding, D. B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), pp. 269–289.

Mc Adams, W. H. (1954). Heat transmission. (3rd ed.), New York: McGraw-Hill.

Oprins, A. J. M. & Heynderickx, G. J. (2003). Calculation of three-dimensional flow and pressure fields in cracking furnaces. Chem. Eng. Sci. 58, pp. 4883 – 4893.

Patankar, S.V. (1980). Numerical Heat transfer and fluid flow. New York: Hemisphere.

Shih, T. H., Liou, W. W., Shabbir, A., Zhu, J. (1995). A new k – ε model eddy viscosity model for high Reynolds number turbulent flows model development and validation. Comput. Fluids. 24(3), pp. 227 – 238.

Stefanidis, G. D., Merci, B., Heynderickx, G. J. & Marin, G. B. (2006). CFD simulations of steam cracking furnaces using detailed combustion mechanisms. Comp. Chem. Eng. 30, pp. 635 – 649.

Stefanidis, G. D., Merci, B., Heynderickx, G. J. & Marin, G. B. (2007). Gray/nongray gas radiation modeling in steam cracker CFD calculations. AIChE Journal, 53(7), pp. 1658 – 1669.

Thome, J. R. (2010). Engineering Data Book III. Wolverine Tube Inc.

Twu, C. H. (1984). An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids. Fluid phase equilibria, 16 (2), pp. 137 – 150.

Versteeg, H. K. & Malalasekera, W. (1995). An introduction to computational fluid dynamics: The finite volume method. England: Longman scientific & technical.
How to Cite
Diaz, F. A., & Castro, J. A. (2011). CFD Technique to calculate tube skin peak temperatures in refinery furnaces . CT&F - Ciencia, Tecnología Y Futuro, 4(4), 73-88. https://doi.org/10.29047/01225383.230

Downloads

Download data is not yet available.
Published
2011-12-01
Section
Scientific and Technological Research Articles