• Fabian A. Díaz Mateus Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Jesús A. Castro Gualdrón Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
Keywords: furnace, simulation, mathematical models, oil refinery hornos, simulación, modelos matemáticos, refinería de petróleo


Se propone un modelo amatemático para la simulación de hornos de refinería. Consta de dos submodelos diferentes, uno para el lado del proceso y otro para el lado de los gases de combustión. El lado del proceso se modela adecuadamente como un flujo de tapón debido a la alta velocidad del fluido dentro de los tubos. El lado de los gases de combustión está compuesto por una cámara radiativa y una sección convectiva, ambas conectadas por una zona de tubo de escudo. Ambos modelos están conectados por la temperatura de la superficie del tubo. Como el modelo del lado de los gases de combustión utiliza esta temperatura como datos de entrada, el modelo del lado del proceso recalcula esta temperatura. El procedimiento se ejecuta
hasta que se alcanza cierta tolerancia. Este modelo matemático ha demostrado ser una herramienta útil para el análisis y la simulación de hornos.


Aladwani, H. A., & Riazi, M. R. (2005). Some guidelines for choosing a characterization method for petroleum fractions in process simulators. Chem. Eng. Res. Des. 83, 160-162.

API Standard 530 (2001). Annex B, Calculation of maxi mum radiant section tube skin temperature, American Petroleum Institute.

API TDB (1997). Technical Data Book-Petroleum Refining. American Petroleum Institute, 6th edition.

Awad, M. M., & Muzychka Y. S. (2005). Bounds on two phase flow. Part 2. Void fraction on circular pipes, ASME Inter. Mechanical Eng.Congress and Exposition. Orlando, Fl., USA, 823-833.

Beattie, D. R., & Whalley, P. B. (1982). A simple two-phase frictional pressure drop calculation method. Int. J. Mul tiphase Flow, (8), 83-87.

Briggs, D. E., & Young, E. H. (1963). Convection heat transfer and pressure drop of air flowing across triangu lar pitch banks of finned tubes. Chem. Eng. Prog. Symp. Ser., 59: 1-10.

Bromley, L. A., & Wilke, C. R. (1951). Viscosity behavior of gases, Ind. Eng. Chem., 43, 1641-1648.

Chato, J. C., Yashar, D. A., Wilson, M. J., Kopke, H. R., Graham, D. M., & Newell, T. A. (2001). An Investiga tion of Refrigerant Void Fraction in Horizontal, Microfin Tubes. Inter. J. of HVAC& Research, 7(1), 67 - 82.

Coddington, P., & Macian, R. (2002). A study of the perfor mance of void fraction correlations used in the context of drift-flux two-phase flow models. Nucl. Eng. Des., 149: 323 - 333.

Dean, D. E., & Stiel, L. I. (1965). The viscosity of nonpolar gas mixtures at moderate and high pressures. AIChE J., 11: 526-532.

Detemmerman, T., & Froment, F. (1998). Three dimensional coupled simulation of furnaces and reactor tubes for the thermal cracking of hydrocarbons. Revue de l'institut français du pétrole, 53 (2), 181 - 194.

Díaz, Fabian A. (2008). Desenvolvimento de Modelo Com putacional para Craqueamento Térmico, M. Sc. Thesis dissertation, Universidade estadual de Campinas, UNI CAMP, Campinas, Brazil, 138pp.

Díaz, Fabian A., Wolf Maciel M. R., Sugaya M. F., Maciel Filho R., & Costa C. B. B. (2008). Furnace modeling and simulation for the thermal cracking of heavy petroleum fractions. XVII Congresso brasileiro de engenharia qui mica, COBEQ, Recife, Brazil.

ESCOA (2002). Engineering Manual, version 2.1.

García, F., García, J. M., García, R., & Joseph, D. D. (2007). Friction factor improved correlations for laminar and turbulent gas-liquid flow in horizontal pipelines. Int. J. Multiphase Flow, 33 (12), 1320-1336.

Gnielinski, V., Zukauskas, A., & Skrinska, A. (1983). Banks of plain and finned tubes. Heat Exchanger Design Hand book, Hemisphere, New York.

Grimson, E. D. (1938). Heat transfer and flow resistance of gases over tube banks. Transaction ofASME. (58), 381-392.

Hankinson, R., & Thomson, G. (1979). A new correlation for saturated densities of liquids and their mixtures. AIChE J. 25 (4), 653-663.

Heynderickx, Geraldine J., Oprins, Arno J. M., & and Marin, Guy B. (2001). Three-Dimensional Flow Patterns in Cracking Furnaces with Long-Flame Burners. AIChE J. 47 (2), 388 - 400.

Hottel, Hoyt C. (1974). First estimates of industrial furnace performance-the one-gas-zone model re-examined. Heat Transfer in Flames, 5-28.

Hughmark, G. A. (1962). Holdup in gas-liquid flow. Chem. Eng. Prog, 53 (4), 62 - 65.

Joo, E., Lee, K., Lee, M. & Park, S. (2000). CRACKER - A PC based simulator for Industrial cracking furnaces. Computers and Chemical Engineering. 24: 1523-1528.

Kendall, J. & Monroe, K. P. (1917). The viscosity of liquids. 2. The viscosity composition curve for ideal liquid mix tures. J. American Chemical Society, 39 (9), 1787-1802.

Khan, W. A., Culham, J.R. & Yovanovich, M. M. (2006). Convection heat transfer from tube banks in crossflow: Analytical approach. Int. J. of thermophysics and heat transfer, 49 (25-26), 4831-4838.

Kim, J. & Ghajar, A. J. (2006). A general heat transfer cor relation for non-boiling gas-liquid flow with different flow patterns in horizontal pipes. Int. J. Multiphase Flow, 32, 447- 465.

Lee, B.I. & Kesler, M. G. (1975). A generalized thermody namic correlation based on three-parameter correspond ing states. AIChE J.,Vol. 21 (3), 510-527.

Maciel Filho, R. & Sugaya, M. F. (2001). A computer aided tool for heavy oil thermal cracking process simulation. Computers and Chemical Engineering. 25: 683 - 692.

Niaei, A., Towfighi, J., Sadrameli, S. M. & Karimzadeh, R. (2004) The combined simulation of heat transfer and py rolysis reactions in industrial cracking furnaces. Applied Thermal Engineering. 24: 2251 - 2265.

Olujic, Z. (1985). Predicting two-phase-flow friction loss in horizontal pipes, Chem. Eng., 92 (13), 45 - 50.

Rachford, H. H. & Rice, J. D. (1952). Procedure for Use of Electrical Digital Computers in Calculating Flash Vaporization Hydrocarbon Equilibrium, J. of Petroleum Technology, 4, s.1, 19, s.2, 3.

Riazi, M. R. & Daubert, T. E. (1987). Characterization pa rameters for petroleum fractions. Ind. Eng. Chem. Res, 26 (4), 755-759.

Rouhani, Z. & Axelsson, E. (1970). Calculation of volume void fraction in the subcooled and quality region. Int. J. Heat Mass Transfer, 13, 383 - 393.

Spencer, C. F. & Danner, R. P.(1973). Prediction of Bubble Point Density of Mixtures. J. Chem. Eng. Data, 18 (2): 230.

Stehlík, P., Kohoutek, J. & Jebácek, V. (1996) Simple math ematical model of furnaces and its possible applications. Comp. Chem. Eng., 20 (11), 1369 -1372.

Stiel, L. I., & Thodos, G. (1961). The viscosity of nonpolar gases at normal pressures. AIChE J., 7: 611- 615.

Twu, Chorng H. (1984). An internally consistent correla tion for predicting the critical properties and molecular weights of petroleum and coal-tar liquids. Fluid phase equilibria, 16 (2), 137-150.

Twu, Chorng H. (1985). Internally consistent correlation for predicting liquid viscosities of petroleum fractions. Ind. Eng. Chem. Process. Des. Dev., 24: 1287-1293.

Weierman, C. (1976). Correlations ease the selection of finned tubes, Oil and Gas J., 74 (36), 94-100.

Woldesemayat, M. A. & Ghajar, A. J. (2007). Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int. J. Multiphase Flow, 33, 347 - 370.

Zukauskas, A. (1972). Heat transfer from tubes in Cross Flow. Advances in heat transfer, 8, 93 - 160.

How to Cite
Díaz Mateus, F. A. ., & Castro Gualdrón, J. A. . (2010). MATHEMATICAL MODEL FOR REFINERY FURNACES SIMULATION. CT&F - Ciencia, Tecnología Y Futuro, 4(1), 89–99.


Download data is not yet available.
Scientific and Technological Research Articles
Crossref Cited-by logo