Thermohydraulic modeling in transient state for evaluation of pipeline shutdown and restart procedures

  • César Nieto-Londoño Aerospace Engineering Research Group, Universidad Pontificia Bolivariana, Medellín, Colombia
  • Carlos Andrés Bustamante-Chaverra Energy and Thermodynamics Group, Universidad Pontificia Bolivariana, Medellín, Colombia
  • Jhon Anderson Buendía-García Ecopetrol – Instituto Colombiano del Petróleo, Piedecuesta, Colombia
  • Luz Angela Novoa Ecopetrol – Instituto Colombiano del Petróleo, Piedecuesta, Colombia
  • Joao Alexander García-Lázaro Universidad Pontificia Bolivariana, Floridablanca, Colombia
  • Geoffrey Viviescas-Ibarra Universidad Pontificia Bolivariana, Floridablanca, Santander
Keywords: Heavy crude, Pipeline, Correlations, Extra-Heavy crude, Light crude, Viscosity, Re-start, Transient state, Modeling, Simulation

Abstract

In order to study shutdown and re-start in heavy crude oil pipelines, a model was developed. It simulates, in a transient state, the behavior of pressure, flow and temperature variables, averaged over the cross-sectional area and as a function of time and the axial coordinate. The model was validated with actual operational data from a test case. Results obtained for different operating points, stopping time, crude properties, topographies and lengths are presented. Additionally, the governing equations are converted to dimensionless expressions in order to obtain the dimensionless numbers relevant to the re-start operation for crude oil pipelines.

References

[1] E. L. Bruce., W. J. Roland., Z. W. Gary., “Hydraulics of pipeline systems,” FL: CRC Press, Boca Raton, 2000.

[2] Davidson, M.R., Nguyen, Q.D., Chang, C., Rønningsen, H.P. A model for restart of a pipeline with compressible gelled waxy crude oil (2004) Journal of Non-Newtonian Fluid Mechanics, 123 (2-3), pp. 269-280. DOI: 10.1016/j.jnnfm.2004.09.007

[3] Chang, C., Nguyen, Q.D., Rønningsen, H.P. Isothermal start-up of pipeline transporting waxy crude oil (1999) Journal of Non-Newtonian Fluid Mechanics, 87 (2-3), pp. 127-154. DOI: 10.1016/S0377-0257(99)00059-2

[4] Vinay, G., Wachs, A., Frigaard, I. Start-up transients and efficient computation of isothermal waxy crude oil flows (2007) Journal of Non-Newtonian Fluid Mechanics, 143 (2-3), pp. 141-156. DOI: 10.1016/j.jnnfm.2007.02.008

[5] Vinay, G., Wachs, A., Agassant, J.-F. Numerical simulation of weakly compressible Bingham flows: The restart of pipeline flows of waxy crude oils (2006) Journal of Non-Newtonian Fluid Mechanics, 136 (2-3), pp. 93-105. DOI: 10.1016/j.jnnfm.2006.03.003

[6] de Oliveira, G.M., Rocha, L.L.V.D., Franco, A.T., Negrão, C.O.R. Numerical simulation of the start-up of Bingham fluid flows in pipelines (2010) Journal of Non-Newtonian Fluid Mechanics, 165 (19-20), pp. 1114-1128. DOI: 10.1016/j.jnnfm.2010.05.009

[7] Liu, E., Li, C., Jia, W., Peng, S., Wu, X., Xu, J. Simulation of shutdown and restarting process of heated oil pipelines (2010) 2010 2nd International Symposium on Information Engineering and Electronic Commerce, IEEC 2010, art. no. 5533271, pp. 35-38. DOI: 10.1109/IEEC.2010.5533271

[8] Li, C., Han, W. Unstable flow analysis of oil pipeline with gas (2006) Oil and Gas Storage and Transportation, 25 (2), pp 23-27.

[9] Oosterkamp, A., Helgaker, J.F., Ytrehus, T. Modelling of natural gas pipe flow with rapid transients-case study of effect of ambient model (2015) Energy Procedia, 64 (C), pp. 101-110. DOI: 10.1016/j.egypro.2015.01.013

[10] Frigaard, I., Vinay, G., Wachs, A. Compressible displacement of waxy crude oils in long pipeline startup flows (2007) Journal of Non-Newtonian Fluid Mechanics, 147 (1-2), pp. 45-64. DOI: 10.1016/j.jnnfm.2007.07.002
[11] Sestak, J., Charles, M.E., Cawkwell, M.G., Houska, M. Start-up of gelled crude oil pipelines (1987) Journal of pipelines, 6, pp. 15–24.

[12] Cawkwell, M.G. & Charles, M.E. An improved model for start-up of pipelines containing gelled crude oil (1987) Journal of pipelines, 7, pp. 41-52.

[13] Wachs, A., Vinay, G., Frigaard, I. A 1.5D numerical model for the start up of weakly compressible flow of a viscoplastic and thixotropic fluid in pipelines (2009) Journal of Non-Newtonian Fluid Mechanics, 159 (1-3), pp. 81-94. DOI: 10.1016/j.jnnfm.2009.02.002

[14] Majidi, S., Ahmadpour, A. Thermally assisted restart of gelled pipelines: A weakly compressible numerical study (2018) International Journal of Heat and Mass Transfer, 118, pp. 27-39. DOI: 10.1016/j.ijheatmasstransfer.2017.10.098

[15] de Oliveira, G.M., Negrão, C.O.R. The effect of compressibility on flow start-up of waxy crude oils
(2015) Journal of Non-Newtonian Fluid Mechanics, 220, pp. 137-147. DOI: 10.1016/j.jnnfm.2014.12.010

[16] Ahmadpour, A., Sadeghy, K., Maddah-Sadatieh, S.-R. The effect of a variable plastic viscosity on the restart problem of pipelines filled with gelled waxy crude oils (2014) Journal of Non-Newtonian Fluid Mechanics, 205, pp. 16-27. DOI: 10.1016/j.jnnfm.2014.01.005

[17] Sun, G., Zhang, J., Ma, C., Wang, X. Start-up flow behavior of pipelines transporting waxy crude oil emulsion (2016) Journal of Petroleum Science and Engineering, 147, pp. 746-755. DOI: 10.1016/j.petrol.2016.10.007

[18] Teng, H., Zhang, J. A new thixotropic model for waxy crude (2013) Rheologica Acta, 52 (10-12), pp. 903-911. DOI: 10.1007/s00397-013-0729-z

[19] Li, C., Jia, W., Liao, K., Wu, X. Heated Oil Pipeline Shutdown and Restart Simulation Software
Development Using VB and MATLAB Hybrid Programming (2012) International Journal of Education and Management Engineering, 2, pp. 6-12. DOI: 10.5815/ijeme.2012.02.02

[20] Patankar, S.V. Numerical Heat Transfer and Fluid Flow, Taylor & Francis, Washington, 1980.

[21] Tannehill, J.C., Anderson, D.A., Pletcher, R.H. Computational fluid mechanics and heat transfer, Taylor & Francis, Washington, 1997.

[22] Phillips, D.A., Forsdyke, I.N., McCracken, I.R., Ravenscroft, P.D. Novel approaches to waxy crude restart: Part 1: Thermal shrinkage of waxy crude oil and the impact for pipeline restart (2011) Journal of Petroleum Science and Engineering, 77, pp. 237–253. DOI: 10.1016/j.petrol.2010.11.009


[23] Martínez-Palou, R., Mosqueira, M.L., Zapata-Rendón, B., Mar-Juárez, E., Bernal-Huicochea, C., Clavel-López, J.C., Aburto, J. Transportation of heavy and extra-heavy crude oil by pipeline: A review (2011) Journal of Petroleum Science and Engineering, 75, pp. 274–282. DOI: 10.1016/j.petrol.2010.11.020

[24] Gonçalves dos Santos, R., Briceño, M., Loh, W. Laminar pipeline flow of heavy oil–in–water emulsions produced by continuous in-line emulsification (2017) Journal of Petroleum Science and Engineering, 156, pp. 827–834. DOI: 10.1016/j.petrol.2017.06.061

[25] Taborda, E., Alvarado, V., Cortés, F. Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market (2017) Energy Conversion and Management, 148, pp. 30-42. DOI: 10.1016/j.enconman.2017.05.055

[26] Zhang, J., Chen, X.P., Zhang, D, Xu, J.Y., Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China (2017) Journal of Petroleum Science and Engineering, 156, pp. 563–574. DOI: 10.1016/j.petrol.2017.06.038
How to Cite
Nieto-Londoño, C., Bustamante-Chaverra, C. A., Buendía-García, J. A., Novoa , L. A., García-Lázaro, J. A., & Viviescas-Ibarra, G. (2019). Thermohydraulic modeling in transient state for evaluation of pipeline shutdown and restart procedures. CT&F - Ciencia, Tecnología Y Futuro, 9(2), 53-60. https://doi.org/10.29047/01225383.179

Downloads

Download data is not yet available.
Published
2019-11-11
Section
Scientific and Technological Research Articles