Unsteady numerical simulation of dynamic reactor - evaporator interaction in thermochemical refrigeration systems.

  • Juan M. Mejía Universidad Nacional de Colombia.
  • Farid Chejne Universidad Nacional de Colombia.
  • Farid B. Cortés Universidad Nacional de Colombia.
Keywords: Simulation, Mathematical modeling, Refrigeration, Evaporator, Reactor, Dynamic state


Close interaction between evaporation/reaction rates in gas-solid refrigeration cycles promotes the dynamic behavior of gas pressure in gas-liquid and gas-solid interfaces in evaporators and reactor diffusers. Simultaneously, gas pressure modifies both reaction rates in reactors and mass and energy transfer rates in reactors and evaporators. The objective of this work is to model the complex interaction between reactor and evaporator using a phenomenological approach. The coupled interaction is studied by a novel mathematical model of the reactor and evaporator at the synthesis/evaporation step. The model of the gas-solid reactor is based on unsteady 2-D mass, momentum and energy transport equations. The evaporator model considers the interaction between evaporation/reaction rates given by the unsteady mass and energy transfer at heterogeneous interfaces and with other components. The thermodynamic properties of the refrigerant are calculated by the Patel-Teja equation-of-state. Simulation results predicted by the model were satisfactorily validated with experimental data. Predicted interaction between reactor, evaporator and cooling space showed non-linear behavior of gas pressure. The simulation results showed that, if the dynamics of the evaporator and cooling space are neglected, coefficient of performance (COP) is overestimated by 32% for the configuration evaluated in this work.


Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (2002). Transport Phenomena, (2nd ed.), New York: John Wiley & Sons.

Castets, K. & Mazet, N. (2000). Analysis and optimization of the cyclic working mode of thermochemical transformers. Appl. Therm. Eng., 20(17), 1649-1666.

Cortés, F. B., Chejne, F., Mejía, J. M. & Londoño, C. (2009). Mathematical model of the sorption phenomenon of methanol in actived coal. Energy Convers. Manage. 50(5), 1295-1303.

Dutour, S., Mazet, N., Joly, J. L. & Platel, V. (2005). Modeling of heat and mass transfer coupling with gas-solid reaction in a sorption heat pump cooled by a two-phase closed thermosyphon. Chem. Eng. Sci., 60(15), 4093- 4104.

Goetz, V. & Llobet, J. (2000). Testing and modeling of a temperature front solid-gas reactor applied to thermo- chemical transformer. Appl. Therm. Eng., 20(2), 155- 177.

Gong, L. X., Wang, R. Z., Xia, Z. Z. & Chen, C. J. (2011). Design and performance prediction of a new generation adsorption chiller using composite adsorbent. Energy Convers. Manage., 52(6), 2345-2350.

Hoyos, J., Velásquez, J., Hill, A., Chejne, F. & Cháves, C. A. (2006). Principios termodinámicos de la refrigeración magnética. Dyna, 149: 95-105.

Jolly, P. & Mazet, N. (1999). Optimisation de la diffusion du gaz dans des matériaux réactifs, siège de transferts de chaleur, de masse et d'une réaction chimique. Int. J. Heat Mass Transf., 42(2), 303-321.

Kasta, W. & Hohenthanner, C. R. (2000). Mass transfer within the gas-phase of porous media. Int. J. Heat Mass Transf., 43(5), 807-823.

Lahmidi, H., Mauran, S. & Goetz, V. (2006). Definition, test and simulation of a thermochemical storage process adapted to solar thermal systems. Sol. Energy, 80(7), 883-893.

Le Pierrés, N., Mazet, N. & Stitou, D. (2007). Modeling and performances of a deep-freezing process using lowgrade solar heat. Energy, 32(2), 154-164.

Le Pierrés, N., Stitou, D. & Mazet, N. (2008). Design of a thermochemical process for deep freezing using solar low-grade heat. Chem. Eng. Process, 47(3), 484-489.

Li, T. X., Wang, R. Z., Kiplagat, J. K., Chen, H. & Wang, L. W. (2011). A new target-oriented methodology of decreasing the regeneration temperature of solid-gas thermochemical sorption refrigeration system drive by low-grade thermal energy. Int. J. Heat Mass Transf., 54(21-22), 4719-4729.

Li, T. X., Wang, R. Z., Wang, L. W. & Lu, Z. S. (2008) Experimental study on an innovative multifunction heat pipe type heat recovery two-stage sorption refrigeration sys- tem. Energy Convers. Manage., 49(10), 2505-2512.

Lu, H. B. & Mazet, M. (1999). Mass-transfer parameters in gas- solid reactive media to identify permeability of IMPEX. AICHE J., 45(11), 2444-2453.

Mauran, S., Lahmidi, H. & Goetz, V. (2008). Solar heating and cooling by a thermochemical process. First experiments of a prototype storing 60 kW h by a solid/gas reaction. Sol. Energy, 82 (7), 623-636.

Mauran, S., Rigaud, L. & Coudevylle, O. (2001). Application of the Carman-Kozeny correlation to a high-porosity and anisotropic consolidated medium: the compressed expanded natural graphite, Transport Porous Med., 43(2), 355-376.

Mazet, N. & Lu, H. B. (1998). Improving the performance of the reactor under unfavourable operating conditions of low pressure. Appl. Therm. Eng., 18(9-10), 819-835.

Olives, R. & Mauran, S. (2001). A highly conductive porous medium for solid-gas reactions: effect of the dispersed phase on the thermal tortuosity. Transport Porous Med., 43(2), 377-394.

Parson, R. (2001). ASHRAE Handbook: (SI Edition, rev Edition). Atlanta: ASHRAE.

Patel, N. & Teja, A. (1982). A new cubic equation of state for fluids and fluid mixtures, Chem. Eng. Sci., 37(3), 463- 473.

Pons, M., Laurent, D. & Meunier, F. (1996). Experimental temperature fronts for adsorptive heat pump applications. Appl. Therm. Eng., 16(5), 395-404.

Saha, B. B, Chakraborty, A., Koyama, S. & Aristov, Y. I. (2009). A new generation cooling device employing Ca- Cl2-in-silica gel-water system. Int. J. Heat Mass Transf., 52(1-2), 516-524.

Stitou, D. & Crozat, G. (1997). Dimensioning nomograms for the design of fixed-bed solid-gas thermochemical reactors with various geometrical configurations. Chem. Eng. Process, 36(1), 45-58.

Velásquez, J. E. & Chejne, F. (2004). Fenómenos de transporte y transferencia, (1st ed.), Medellín: Universidad Nacional de Colombia, sede Medellín, Centro de Publicaciones.

Verteeg, H. K. & Malalasekera, W. (1995). An introduction to computational fluid dynamics, the finite volume method. 1st ed., New York: Longman Scientific & Technical.

Wang, D. C., Xia, Z. Z., Wu, J. Y., Wang, R. Z., Zhai, H. & Dou, W. D. (2005). Study of a novel silica gel-water adsorption chiller. Part I. Design and performance prediction. Int. J. Refrig., 28(7), 1073-1083.

Wu, W. D., Zhang, H. & Sun, D. W. (2009). Mathematical simulation and experimental study of a modified zeolite 13X-water adsorption refrigeration module. Appl. Therm. Eng., 29(4), 645-651.

Zhao, Y. L., Hu, E. & Blazewicz, A. (2012). A non-uniform pressure and transient boundary condition based dynamic modeling of the adsorption process of an adsorption refrigeration tube. Appl. Energ., 90(1), 280-287.

Ziegler, F. (1999). Recent developments and future prospects of sorption heat pump systems. Int. J. Thermal Sci. 38(3), 91-208.
How to Cite
Mejía, J. M., Chejne, F., & Cortés, F. B. (2013). Unsteady numerical simulation of dynamic reactor - evaporator interaction in thermochemical refrigeration systems. CT&F - Ciencia, Tecnología Y Futuro, 5(3), 107-126. https://doi.org/10.29047/01225383.51


Download data is not yet available.
Scientific and Technological Research Articles
Crossref Cited-by logo

More on this topic