Gas transport at dense phase conditions for the development of deepwater fields in the Colombian Caribbean sea

  • Manuel Cabarcas Simancas Universidad Industrial de Santander, Bucaramanga, Colombia
  • Angélica María Rada Santiago Universidad Industrial de Santander, Bucaramanga, Colombia
  • Brandon Humberto Vargas Vera Universidad Industrial de Santander, Bucaramanga, Colombia
Keywords: Dense fluid, Offshore, Gas pipeline, Deepwater, Simulation, Field development


The purpose of this article is to set out the benefits of using the dense phase gas transport in future projects in the Caribbean Sea and to verify that when operating pipelines at high pressures, more mass per unit of volume is transported, and liquid formation risks are mitigated in hostile environments and low temperatures.
This study contains key data about gas production fields in deep and ultra-deep waters around the world, which serve as a basis for research and provide characteristics for each development to be contrasted with the subsea architecture proposed in this paper. Additionally, analogies are established between the target field (Gorgón-1, Kronos-1 and Purple Angel-1) and other offshore gas fields that have similar reservoir properties. Using geographic information systems, the layout of a gas pipeline and a subsea field architecture that starts in the new gas province is proposed.
Finally, using a hydraulic simulation tool, the gas transport performance in dense phase is analyzed and compared with the conventional way of transporting gas by underwater pipelines, achieving up to 20 % in cost savings when dense phase is applied.


BP Energy, BP's Energy Outlook 2018, British Petroleum Energy. [Online]. Available:

T. Schröder y D. Ladischensky, Oil and gas from the sea, World Ocean Review. [Online]. Available:

UPME, Documento Análisis de Abastecimiento y Confiabilidad del Sector Gas Natural, Unidad de Planeación Minero Energética, Julio 2018. [Online]. Available:

Colombia Energía, El futuro se vislumbra mar adentro, Colombia Energía, Edition n° 14, p. 16 - 18, 2016. [Online]. Available:

C. Lozano, La infraestructura para el desarrollo offshore va por buen camino, Colombia Energía, Edición No 14, p. 33, 2016. [Online]. Available:

G. Lorio, R. Bruschi and E. Donati, Challenges and opportunities for ultradeep waters pipelines in difficult sea bottoms, 16th World Petroleum Congress, Calgary, Canada, Jun. 11-15, 2000.

Nava, Z. E., Rojas, M., Martinez Marcano, N., Trujillo, J. N., Rigual, Y. C., and Gonzalez C. Hydraulic Evaluation of Transport Gas Pipeline on Offshore Production, International Petroleum Technology Conference, Bangkok, Thailand, Nov. 15-17, 2011.

Schaefer, E. F., Pigging of subsea pipelines, Offshore Technology Conference, Houston, Texas, USA, 6-9 May 1991.

AlHarooni, K. M., Barifcani, A., Pack, D. and Iglauer, S., Evaluation of Different Hydrate Prediction Software and Impact of Different MEG Products on Gas Hydrate Formation and Inhibition, Offshore Technology Conference, Kuala Lumpur, Malaysia, Mar 22-25, 2016.

Moshfeghian, M., Variation of properties in the dense phase region part 1, John M. Campbell, 2009. [Online]. Available:

Maribu, J., Falck, C. and Burman, P., Asgard Gas Transport System: Precommissioning and Commissioning, The Eleventh Int. Offshore and Polar Engineering Conference, Stavanger, Norway, Jun. 17-22, 2001.

Helland, A. I., Ohm, A., and Johannessen, A., Asgard Transport Pipeline - Onshore Section, The Eleventh Int. Offshore and Polar Engineering Conference, Stavanger, Norway, Jun. 17-22, 2001.

AlRaeesi, F. and Al Kaabi, N., Impacts of Dense Phase Flow on Pipeline Capacity - Case Study, International Petroleum Exhibition & Conference, Abu Dhabi, UAE, Nov. 7-10, 2016.

King, G., Ultra-High Gas Pressure Pipelines Offer Advantages for Arctic Service, Oil & Gas Journal, 1992, vol. 90, pp. 79-84, 0030-1388, 1991.

King, G., Kedge, C., Zhou, X. and Matuszkiewicz, A., Superhigh Pressure Dense Phase Arctic Pipelines Increase Reliability and Reduce Costs, 4th International Pipeline Conference, Calgary, Alberta, Canada, Sep. 29–Oct. 3, 2002.

Corbett, K. T., Bowen, R. R., and Petersen, C. W., High-strength Steel Pipeline Economics, International Journal of Offshore and Polar Engineering, vol. 14 (01), pp. 75-80, 1053-5381, 2004.

Betancourt, S., et al. (2008). Avances en las mediciones de las propiedades de los fluidos. In Oilflied Review, p. 62. Betancourt, S., Ray, K., Davies, T., Dong, C., Elshahawi, H., Mullins, O., Nighswander, J., and O’Keefe, M. Houston: Schlumberger.

Moshfeghian, M., Variation of properties in the dense phase region; Part 2 – Natural Gas, John M. Campbell, 2010 [Online]. Available:

Baker, M., Transport of North Slope Natural Gas Tidewater, Baker, Alaska, 2005.

Helgaker, H. F. and Ytrehus, T., Coupling between Continuity/Momentum and Energy Equation in 1D Gas Flow, 2nd Trondheim Gas Technology Conference, Trondheim, Norway, December 2012.

Helgaker, J. F., Modeling transient low in long distance offshore natural gas pipelines, Phil. Doctoral thesis, Dept. Energy and Processes Eng., Norwegian Univ. of Science and Technology (NTNU), Trondheim, Norway, 2013.

Lee, A. L., Gonzalez, M. H., Aime, J. M., and Eakin, B. E., The Viscosity of Natural Gases, Journal of Petroleum Technology, vol. 13, pp. 997 - 1.000, Aug. 1, 1966.

Ramsen, J., Losnegard, S.-E., Langelandsvik, L. I., Simonsen, A. J. and Postvoll, W., Important Aspects of Gas Temperature Modeling in Long Subsea Pipelines, PSIG Annual Meeting, Galveston, Texas, USA, May 12-15,2009.

Agencia Nacional de Hidrocarburos. (2014). Ronda Colombia 2014 [Online]. Available:

APC. (2017) APC, Fourth Quarter Operations Report [Online]. Available:

Belalcázar, J. C., Costa afuera, oportunidades en el mar profundo, Colombia Energía, Edition nº 15, pp. 56, 2017. [Online] Available:

Vargas, C. A., Evaluating total Yet-to-Find hydrocarbon volume in Colombia, Earth Sciences Research Journal, Bogota, 2012, vol. 19 (special issue), pp. 1-246.

Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe (cioh). (2017). Aviso a Navegantes [Online]. Available:

Esri. Bathymetry [Basemap]. (2017). Scale not given. World Bathymetric Map. September 28, 2017 [Online]. Available:

How to Cite
Cabarcas Simancas, M., Rada Santiago, A. M., & Vargas Vera, B. H. (2020). Gas transport at dense phase conditions for the development of deepwater fields in the Colombian Caribbean sea. CT&F - Ciencia, Tecnología Y Futuro, 10(1), 17-32.


Download data is not yet available.
Scientific and Technological Research Articles