Acute toxicity of drilling muds on litopenaeus vannamei (boone, 1931) postlarvae

  • Guillermo José Contreras León Universidad de Bogotá Jorge Tadeo Lozano.
  • Simón Andrés Rodríguez Satizábal Universidad de Bogotá Jorge Tadeo Lozano.
  • Claudia Marcela Castellanos Romero Universidad de Bogotá Jorge Tadeo Lozano.
  • Andrés Franco Herrera Universidad de Bogotá Jorge Tadeo Lozano.
  • Marlon Serrano Gómez Ecopetrol S.A.
Keywords: Drilling muds, Toxicity, Marine organisms, Environmental impact, Offshore


Acute toxicity of six drilling muds (water based and synthetic based) was evaluated using Litopenaeus vannamei postlarvae to establish the 96 h median lethal concentration (LC50). The Suspended Particulate Phase (SPP) of each drilling mud was used as test material. Each mud SPP was evaluated using five test concentrations, and four replicates of each were used including the control. LC50 values obtained ranged from 4224 ppm to 26635 ppm for Water Based Mud (WBM) and from 40781 ppm to 308248 ppm for Synthetic Based Mud (SBM). The test protocol for acute toxicity for this species was validated through a control chart with the reference toxicant potassium dichromate. Litopenaeus vannamei clearly showed the required conditions to be used in acute toxicity tests. This research is pioneer in Colombia to determine the effects of drilling muds using a local marine organism.


ABNT. (2005). Ecotoxicologia aquática, toxicida de aguda, metodo de ensaio com misidaceos (Crustacea). NBR 15308. Asociacao Brasileira de Normas Técnicas. Brasil.

Campos, N., Navas, G., Bermúdez, A. & Cruz, N. (2005). Los crustáceos decápodos de la franja superior del talud continental (300-500 m) del Mar Caribe colombiano. Bogotá: Universidad Nacional de Colombia. Facultad de Ciencias Naturales.

Code of Federal Regulations (2012). Oil and gas extraction point source category. Off shore sub category. Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable (BAT). 40CFR435.13.

Cupello, A. C., Marroquín, A. C., Franca, J. & Rabke, S. P. (2010). Comparison between acute and chronic toxicities of drilling fluids in Brazil: Is it possible to determine a correlation between them?. SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Rio de Janeiro, Brazil.

Duke, T. W. & Parrish, P. R. (1985). Toxicity tests and Best Available Technology (BAT) determinations for discharge from offshore oil and gas platforms. United States Environmental Agency. Office of Water Regulations and Standards. Industrial Technology Division. 8th Annual Analytical Symposium. Norfolk, Virginia, USA.

Duke, T. W., Parrish, P. R., Montgomery, R. M., Macauley, S. D., Macauley, J. M. & Cripe, G. M. (1984). Acute toxicity of eight laboratory-prepared generic drilling fluids to mysids (Mysidopsis bahia). EPA-600/3-84-067.

EPA (1993). Oil and gas extraction point source category off shore subcategory. Effluent limitations guidelines and new source performance standards. 40CFR435.

EPA (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA -821-R-02-012.

EPS (1990). Guidance document on control of toxicity test precision using reference toxicants. Environment Canada. Report EPS 1/RM/12.

Fink, J. (2011). Petroleum engineer's guide to oil field chemicals and fluids. Chapter: Drilling muds. Waltham: Gulf Professional Publishing.

Frías-Espericueta, M. G., Voltolina, D. & Osuna-López, J. I. (2001). Acute toxicity effects of cadmium, mercury, and lead to whiteleg shrimp (Litopenaeus vannamei) postlarvae. Bull. Environ. Contam. Toxicol., 67(4), 580-586.

Frías-Espericueta, M. G., Voltolina, D. & Osuna-López, J. I. (2003). Acute toxicity of copper, zinc, iron, and manganese and of the mixtures copper-zinc and iron-manganese to whiteleg shrimp Litopenaeus vannamei postlarvae. Bull. Environ. Contam. Toxicol., 71(1), 68-74.

Frías-Espericueta, M. G., Castro-Longoria, R., Barón-Gallardo, G. J., Osuna-López, I., Abad-Rosales, S. M., Páez-Osuna, F. & Voltolina, D. (2008). Histological changes and survival of Litopenaeus vannamei juve- niles with different copper concentrations. Aquaculture, 278(1-4), 97-100.

García-de la Parra, L. M., Bautista-Covarrubias, J. C., Rivera-de la Rosa, N., Betancourt-Lozano, M. & Guilhermino, L. (2006). Effects of methamidophos on acetylcholinesterase activity, behavior, and feeding rate of the white shrimp (Litopenaeus vannamei). Ecotox. Environ. Saf., 65(3), 372-380.

GESAMP (2002). The revised GESAMP hazard evaluation procedure for chemical substances carried by ships. Reports and Studies, Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) No. 64.

Jones, F. V., Moffitt, C. M., Bettge, W., Leuterman, A. J. J. & Garrison, R. (1986). Drilling fluids firms respond to EPA toxicity concerns. Oil Gas J., 84: 71-77.

Li, E., Xiong, Z., Chen, L., Zeng, C. & Li, K. (2008).Acute toxicity of boron to juvenile white shrimp, Litopenaeus vannamei, at two salinities. Aquaculture, 278(1-4), 175-178.

Luvesuto, E., Domingues de Freitas, P. & Galleti, P. M. (2007). Genetic variation in a closed line of the white shrimp Litopenaeus vannamei (Penaeidae). Genet. Mol. Biol, 30(4), 1156-1160.

Melton, H. R., Smith, J. P., Martin, C. R., Nedwed, T. J., Mairs, H. L. & Raught, D. L. (2000). Offshore discharge of drilling fluids and cuttings a scientific perspective on public policy. Rio Oil & Gas Expo and Conference. Rio de Janeiro. Brazil. IBP 44900.

National Research Council. (1983). Drilling discharges in the marine environment. Washington. D.C.: National Academy Press.

Neff, J. M. (2005). Composition, environmental fates, and biological effects of water based drilling muds and cuttings discharged to the marine environment: A Synthesis and annotated bibliography. Reported prepared for Petroleum Environmental Research Forum (PERF) and American Petroleum Institute. Washington D.C.

Neff, J. M. (2008). Estimation of bioavailability of metals from drilling mud barite. Integr. Environ. Assess. Manag., 4(2), 184-193.

Rivera-Velásquez, G., Salgado-Ugarte, I., Soto, L. & Naran- jo, E. (2010). Un estudio de caso en el análisis de la distri- bución de frecuencias de tallas de Litopenaeus vannamei (Boone, 1931) mediante el uso de estimadores de densidad de Kernel. Lat. Am. J. Aquat. Res., 38(2), 201-209.

Silva, J., Torrejón, G., Bay-Schmith, E. & Larrain, A. (2003). Calibración del bioensayo de toxicidad aguda con Daphnia pulex (Crustácea: Cladócera) usando un toxico de referencia. Gayana, 67(1), 87-96.

SIPA. (2009). Pesca de camarón en el Caribe Colombiano. Sistema de información de pesca y acuacultura. Boletín mensual, 40: 1-18.

Soegianto, A., Irawan, B. & Affandi, M. (2008). Toxicity of drilling waste and its impact on gill structure of post larvae of tiger prawn (Penaeus monodon). Glob. J. Environ. Res. 2(1), 36-41.

Valles-Jiménez, R., Cruz, P. & Pérez-Enríquez, R. (2005). Population genetic structure of Pacific White shrimp (Litopenaeus vannamei) from Mexico to Panama: microsatellite DNA variation. Mar. Biotechnol, 6(5), 475-484.

Veiga, L. F., Tostes, Z. T., Reynier, M. V., Brandão, G. F., R. & Oliveira, F. F. (2001). Marine toxicity of drilling fluids. SETAC 22nd Annual Meeting. Baltimore, Maryland, USA. PH 002.

Villamar, F. (1990). Bioensayo para calcular el CL50 del dispersante de petróleo BP 1100-WD con larvas de camarón Penaeus vannamei. Acta Oceanográfica del Pacífico, 6(1), 73-78.

Wu, J. P. & Chen, H. C. (2004). Effects of cadmium and zinc on oxygen consumption ammonium excretion, and osmoregulation of white shrimp (Litopenaeus vannamei).Chemosphere, 57(11), 1591-1598.
How to Cite
Contreras León, G. J., Rodríguez Satizábal, S. A., Castellanos Romero, C. M., Franco Herrera, A., & Serrano Gómez, M. (2013). Acute toxicity of drilling muds on litopenaeus vannamei (boone, 1931) postlarvae. CT&F - Ciencia, Tecnología Y Futuro, 5(3), 127-138.


Download data is not yet available.
Scientific and Technological Research Articles
Crossref Cited-by logo

More on this topic