Simulation of thermochemical processes in Aspen Plus as a tool for biorefinery analysis

Keywords: biomass, simulation, Gasification, Pyrolysis, Chemical reactions, Aspen Plus Biomasa, Simulación, Gasificación, Pirolisis, Reacciones, Aspen Plus


The development of tools for the synthesis, design, and optimization of biorefineries requires deep knowledge of the thermochemical processes involved in these schemes. For this project, three models from scientific literature were implemented to simulate the processes: fast pyrolysis in a fluidized bed, fixed-bed, and fluidized-bed gasification using the Aspen PlusTM software. These models allow the user to obtain performance, consumption, and cost parameters necessary for the design and optimization of biorefineries schemes. The fast pyrolysis model encompasses a detailed description of biomass decomposition and kinetics of the process (149 reactions). In the fixed-bed gasification process, seven reactions that model the process have been integrated into two equilibrium reactors that minimize the Gibbs free energy. The model used for fluidized bed gasification considers both hydrodynamic and kinetic parameters, as well as a kinetic model that considers the change in the combustion reaction rate of biomass with oxygen leading to a change in temperature. Due to the complexity and detail of all these models, it was necessary to use FORTRAN subroutines and iterative Excel macros linked to Aspen PlusTM. Finally, the results of each simulation were validated with data from the model sources, as well as experimental results from the literature.

Author Biographies

Valentina Sierra, Universidad Nacional de Colombia

Universidad Nacional de Colombia, Facultad de minas, Medellín, Colombia

Carlos Ceballos, Universidad de la Guajira, Universidad Nacional de Colombia

Ingeniero Químico, Magister en Ingeniería Química y Candidato a Ph.D. en Ingeniería - Sistemas Energéticos.

  • Universidad Nacional de Colombia, Facultad de minas, Medellín, Colombia
  • Universidad de la Guajira, Facultad de ingeniería, Riohacha, Colombia
Farid Chejne Janna, Universidad Nacional de Colombia

Universidad Nacional de Colombia, Facultad de minas, Medellín, Colombia


Seifi, S. & D. Crowther, (2016). Managing with Depleted Resources", Corporate Responsibility and Stakeholding (Developments in Corporate Governance and Responsibility), 10,(67–86). .

UPME, Unidad de Planeación Minero Energética. (2014). Plan De Expansion De Referencia Generacion - Transmisión, 2015-2029 Unidad de Planeación Minero Energética. Recuperado de:

UPME, Unidad de Planeación Minero Energética. (2015). Plan Energético Nacional Colombia: Ideario Energético 2050. Recuperado de:

Burger, B., Kiefer, K., Kost, C., Nold, S., Philipps, S., Preu, R., ... & Willeke, G. (2014). Photovoltaics Report 2014. Fraunhofer Institute for Solar Energy Systems ISE, Freiburg, Germany, 24.

British Petroleum, (2020). Energy Outlook 2020 edition, Energy Outlook 2020 edition. [Online]. recuperado de:

Joint Research Centre, (2020). State of the Art on Alternative Fuels Transport Systems in the European Union - Update 2020 - Well-to-Wheels analysis of future automotive fuels and powertrains in the European context, (February). doi:

Ubando, A. T., Felix, C. B., & Chen, W. H. (2020). Biorefineries in circular bioeconomy: A comprehensive review. Bioresource technology, 299, 122585.

Ubando, A. T., Del Rosario, A. J. R., Chen, W. H., & Culaba, A. B. (2021). A state-of-the-art review of biowaste biorefinery. Environmental Pollution, 269, 116149.

Perea-Moreno, M. A., Samerón-Manzano, E., & Perea- Moreno, A. J. (2019). Biomass as renewable energy: Worldwide research trends. Sustainability, 11(3), 863.

Sher, F., Iqbal, S. Z., Liu, H., Imran, M., & Snape, C. E. (2020). Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 203, 112266.

Liang, J., Nabi, M., Zhang, P., Zhang, G., Cai, Y., Wang, Q., ... & Ding, Y. (2020). Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews, 134, 110335.

Zheng, Y., Jenkins, B. M., Kornbluth, K., & Træholt, C. (2018). Optimization under uncertainty of a biomass-integrated renewable energy microgrid with energy storage. Renewable energy, 123,(204-217). .

Valdés, C. F., Chejne, F., Marrugo, G., Macias, R. J., Gómez, C. A., Montoya, J. I., ... & Arenas, E. (2016). Co-gasification of sub-bituminous coal with palm kernel shell in fluidized bed coupled to a ceramic industry process. Applied Thermal Engineering, 107,(1201-1209).

Granados, D. A., Basu, P., Nhuchhen, D. R., & Chejne, F. (2019). Investigation into torrefaction kinetics of biomass and combustion behaviors of raw, torrefied and char samples. Biofuels, 633-643.

Osorio, J., & Chejne, F. (2019). Bio-oil production in fluidized bed reactor at pilot plant from sugarcane bagasse by catalytic fast pyrolysis. Waste and Biomass Valorization, 10(1), 187-195.

Valdés, C. F., Marrugo, G. P., Chejne, F., Marin- Jaramillo, A., Franco-Ocampo, J., & Norena-Marin, L. (2020). Co-gasification and co-combustion of industrial solid waste mixtures and their implications on environmental emissions, as an alternative management. Waste Management, 101, 54-65.

Baruah, D., & Baruah, D. C. (2014). Modeling of biomass gasification: A review. Renewable and Sustainable Energy Reviews, 39, 806-815.

Zhao, S., & Luo, Y. (2020). Multiscale Modeling of Lignocellulosic Biomass Thermochemical Conversion Technology: An Overview on the State-of-the-Art. Energy & Fuels, 34(10), 11867-11886.

Kanatlı, T. K., & Ayas, N. (2021). Simulating the steam reforming of sunflower meal in Aspen Plus. International Journal of Hydrogen Energy (57), 29076-29087.

Han, D., Yang, X., Li, R., & Wu, Y. (2019). Environmental impact comparison of typical and resource-efficient biomass fast pyrolysis systems based on LCA and Aspen Plus simulation. Journal of cleaner production, 231, 254-267.

Manual, A. P. (2001). Physical property systems, physical property methods and models 11.1. Aspen Technology Inc.

Ahmed, A. M. A., Salmiaton, A., Choong, T. S. Y., & Azlina, W. W. (2015). Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus. Renewable and Sustainable Energy Reviews, 52, 1623- 1644.

Hernández, J. J., Aranda-Almansa, G., & Bula, A. (2010). Gasification of biomass wastes in an entrained flow gasifier: Effect of the particle size and the residence time. Fuel Processing Technology, 91(6), 681-692.

Guo, Q., Chen, X., & Liu, H. (2012). Experimental research on shape and size distribution of biomass particle. Fuel, 94, 551-555.

Abba, I. A., Grace, J. R., Bi, H. T., & Thompson, M. L. (2003). Spanning the flow regimes: Generic fluidized‐bed reactor model. AIChE Journal, 49(7), 1838-1848.

Yates, J. G., (1988). Gas fluidization technology, The Chemical Engineering Journal 37(2), 134–135.

Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and bioenergy, 38, 68-94.

Bridgwater, T., (2018). Challenges and opportunities in fast pyrolysis of biomass: Part I, Johnson Matthey Technology Review., 62(1), 118–130.

Guda, V. K., P. H. Steele, V. K. Penmetsa, & Q. Li, (2015). Fast Pyrolysis of Biomass: Recent Advances in Fast Pyrolysis Technology, In Recent Advances in Thermochemical Conversion of Biomass, Elsevier Inc., 177–211.

Peters, J. F., Banks, S. W., Bridgwater, A. V., & Dufour, J. (2017). A kinetic reaction model for biomass pyrolysis processes in Aspen Plus. Applied energy, 188, 595-603.

Peters, J. F., (2015). Pyrolysis for biofuels or biochar? A thermodynamic, environmental and economic assessment, Ph.D. Thesis., Universidad Rey Juan Carlos.

Faravelli, T., A. Frassoldati, G. Migliavacca, & E. Ranzi, (2010). Detailed kinetic modeling of the thermal degradation of lignins, Biomass and Bioenergy, 34(3), 290–301.

Wen, C. Y. & Y. H. Yu, (1966). A generalized method for predicting the minimum fluidization velocity, AIChE Journal, 12 (3), 610–612.

Nikoo, M. B. & N. Mahinpey, (2008). Simulation of biomass gasification in fluidized bed reactor using ASPEN PLUS, Biomass and Bioenergy, 32(12), 1245–1254.

Suwatthikul, A., S. Limprachaya, P. Kittisupakorn, & I. M. Mujtaba, (2017). Simulation of steam gasification in a fluidized bed reactor with energy self-sufficient condition, Energies, 10(3), 1–15.

Puig-Gamero, M., Pio, D. T., Tarelho, L. A. C., Sánchez, P., & Sanchez-Silva, L. (2021). Simulation of biomass gasification in bubbling fluidized bed reactor using aspen plus®. Energy Conversion and Management, 235, 113981.

Jain, A. A., Mehra, A., & Ranade, V. V. (2018). Modeling and simulation of a fluidized bed gasifier. Asia‐Pacific Journal of Chemical Engineering, 13(1), e2155.

Daizo, K. and O. Levenspiel, (1991). Fluidization engineering, 2nd edition. Stoneham, MA (United States); Butterworth Publishers.

Babu, S. P., B. Shah, & A. Talwalkar, (1978). Fluidization correlations for coal gasification materials - minimum fluidization velocity and fluidized bed expansion ratio., AIChE Symp Ser, 74(176), 176–186.

Yan, H. M., C. Heidenreich, & D. K. Zhang, (1998). Mathematical modelling of a bubbling fluidised-bed coal gasifier and the significance of “net flow,” Fuel, 77(9–10), 1067–1079.

Rajan, R. R. & C. Y. Wen, (1980). A comprehensive model for fluidized bed coal combustors, AIChE Journal., 26(4), 642–655.

Matsui, I., D. Kunii, & T. Furusawa, (1985). Study of fluidized bed steam gasification of char by thermogravimetrically obtained kinetics, Journal of chemical engineering of Japan, 18 (2), 105–113.

Harris, D. J. and D. G. Roberts, (2013). Coal gasification and conversion, in The Coal Handbook: Towards Cleaner Production 2 (427–454), Elsevier Inc.

Muslim, M. B., S. Saleh, & N. A. F. A. Samad, (2017). Effects of purification on the hydrogen production in biomass gasification process, Chemical. Engineering. Transaction., 56, 1495–1500.

Acevedo, J. C., Posso, F. R., Durán, J. M., & Arenas,E. (2018, November). Simulation of the gasification process of palm kernel shell using Aspen PLUS. In Journal of Physics: Conference Series (Vol. 1126, No. 1, p. 012010). IOP Publishing.

Moshi, R. E., Jande, Y. A. C., Kivevele, T. T., & Kim, W. S. (2020). Simulation and performance analysis of municipal solid waste gasification in a novel hybrid fixed bed gasifier using Aspen plus. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1-13.

Montoya, J. I., Valdés, C., Chejne, F., Gómez, C. A., Blanco, A., Marrugo, G., ... & Acero, J. (2015). Bio-oil production from Colombian bagasse by fast pyrolysis in a fluidized bed: An experimental study. Journal of Analytical and Applied Pyrolysis, 112, 379-387.

Nayaggy, M., & Putra, Z. A. (2019). Process simulation on fast pyrolysis of palm kernel shell for production of fuel. Indonesian Journal of Science and Technology, 4(1), 64-73.

Islam, M. N., Zailani, R., & Ani, F. N. (1999). Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation. Renewable Energy, 17(1), 73-84.

Phyllis2 - Database for the physico-chemical composition of (treated) lignocellulosic biomass, micro-and macroalgae, various feedstocks for biogas production and biochar. [Online]. recuperado de: .

How to Cite
Sierra Jimenez, V., Ceballos Marín, C. . M., & Chejne Janna, F. (2021). Simulation of thermochemical processes in Aspen Plus as a tool for biorefinery analysis. CT&F - Ciencia, Tecnología Y Futuro, 11(2), 27–38.


Download data is not yet available.
Crossref Cited-by logo