Suitability assessment for electricity generation through renewable sources: towards sustainable energy production

Keywords: Mathematical model, Renewable energy, Sustainable development, Environmental indicators, Wind energy, Solar energy, Biomass, Social acceptance Modelos matemáticos, energía renovable, energía eólica, energía solar, biomasa, indicadores ambientales, Desarrollo sostenible, aceptación social


Power generation through renewable sources is an effective alternative to mitigate climate change as its environmental impact is lower compared to fossil fuels. However, socio-economic problems are constant in sites where power plants are installed, especially in developing countries. In this paper, an innovative methodology was developed to assess the suitability of electricity generation through solar, wind, and biomass energy. Unlike most studies found in scientific literature, this work considers social, environmental, and economic aspects as key to determine the suitability of energy projects. First, we carried out a comprehensive analysis on social acceptance and resilience towards renewable energy and the conditions for communities to benefit from these projects; then, we analyzed the availability and capacity of renewable energy sources in Mexico, as a case study. Next,  a set of indicators related to the three pillars of sustainability was developed to assess the conditions of each place with the best renewable resources in the country. The life cycle and capacity factor of each technology were also considered. Lastly, a mathematical model was developed to determine the most suitable locations and technologies for power generation. The results show a trend towards the states of northern Mexico, especially those bordering the United States, as the most viable for electricity generation. The most appropriate technology is wind energy. Finally, Oaxaca, the state with the best wind resources and current leader in wind power generation in Mexico is, by contrast, the least viable state for wind generation, as has been later confirmed by scientific evidence, as wind facilities are associated with severe socio-cultural and economic damage in host communities in this state.


REN21, (2020). Key Findings of the GSR. [Online]. Available:

Chmutina, K., & Goodier, C. I. (2014). Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK. Energy Policy, 66, 62-72.

Sharma, D. C., (2007). Transforming rural lives through decentralized green power, Futures, 39(5), 583–596.

Yaqoot, M., Diwan, P., & Kandpal, T. C. (2017). Financial attractiveness of decentralized renewable energy systems–A case of the central Himalayan state of Uttarakhand in India. Renewable energy, 101, 973-991.

Pérez-Denicia, E., Fernández-Luqueño, F., Vilariño-Ayala, D., Montaño-Zetina, L. M., & Maldonado-López, L. A. (2017). Renewable energy sources for electricity generation in Mexico: A review. Renewable and Sustainable Energy Reviews, 78, 597-613.

Secretaría de Energía, Atlas Nacional de Zonas con Alto Potencial de Energías Limpias. [Online]. Available:

Secretaría de Energía, Inventario Nacional de Energías Limpias. [Online]. Available:

Villicaña-Ortiz, E., Gutiérrez-Trashorras, A. J., Paredes-Sánchez, J. P., & Xiberta-Bernat, J. (2015). Solar energy potential in the coastal zone of the Gulf of Mexico. Renewable Energy, 81, 534-542.

Cancino-Solórzano, Y., Gutiérrez-Trashorras, A. J., & Xiberta-Bernat, J. (2011). Current state of wind energy in Mexico, achievements and perspectives. Renewable and Sustainable Energy Reviews, 15(8), 3552-3557.

Hernández-Escobedo, Q., Manzano-Agugliaro, F., & Zapata-Sierra, A. (2010). The wind power of Mexico. Renewable and Sustainable Energy Reviews, 14(9), 2830-2840.

Rios, M., & Kaltschmitt, M. (2016). Electricity generation potential from biogas produced from organic waste in Mexico. Renewable and Sustainable Energy Reviews, 54, 384-395.

Eseonu, C. I., & Egbue, O. (2014, May). Socio-cultural influences on technology adoption and sustainable development. In Proceedings of the Industrial and Systems Engineering Research Conference, Montreal, Canada (pp. 2711-2717).

Agüero-Rodríguez, J. C., Tepetla-Montes, J., & Torres-Beristaín, B. (2015). Producción de biocombustibles a partir de la caña en Veracruz, México: perspectivas y riesgos socio-ambientales. CienciaUAT, 9(2), 74-84.

Corona, B., Ruiz, D., & San Miguel, G. (2016). Life cycle assessment of a HYSOL concentrated solar power plant: analyzing the effect of geographic location. Energies, 9(6), 413.

Huesca-Pérez, M. E., Sheinbaum-Pardo, C., & Köppel, J. (2016). Social implications of siting wind energy in a disadvantaged region–The case of the Isthmus of Tehuantepec, Mexico. Renewable and Sustainable Energy Reviews, 58, 952-965.

Juárez-Hernández, S., & León, G. (2014). Energía eólica en el istmo de Tehuantepec: desarrollo, actores y oposición social. Problemas del desarrollo, 45(178), 139-162.

Pasqualetti, M. J., & Brown, M. A. (2014). Ancient discipline, modern concern: Geographers in the field of energy and society. Energy Research & Social Science, 1, 122-133.

Skutsch, M., De los Rios, E., Solis, S., Riegelhaupt, E., Hinojosa, D., Gerfert, S., & Masera, O. (2011). Jatropha in Mexico: environmental and social impacts of an incipient biofuel program. Ecology and Society, 16(4).

Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., & Cutler, H. (2020). State of the research in community resilience: Progress and challenges. Sustainable and resilient infrastructure, 5(3), 131-151.

Arbon, P., K. Gebbie, L. Cusack, S. Perera, and S. Verdonk, (2012). Developing a Model and Tool to Measure Community Disaster Resilience: Final Report October 2012. Adelaide, Australia: Torrens Resilience Institute. URL:

Arciniega, J. D. D. U. (2010). La resiliencia comunitaria en situaciones catastróficas y de emergencia. International journal of developmental and educational psychology, 1(1), 687-693.

Sherrieb, K., Norris, F. H., & Galea, S. (2010). Measuring capacities for community resilience. Social indicators research, 99(2), 227-247.

Fitzpatrick, T., (2016). Community Disaster Resilience, Disasters and Public Health (57-85). Melbourne, Australia: Elsevier Inc.

Obrist, B., Pfeiffer, C., & Henley, R. (2010). Multi‐layered social resilience: A new approach in mitigation research. Progress in Development Studies, 10(4), 283-293.

Wolsink, M. (2018). Social acceptance revisited: gaps, questionable trends, and an auspicious perspective. Energy research & social science, 46, 287-295.

Wolsink, M. (2012). Undesired reinforcement of harmful ‘self-evident truths’ concerning the implementation of wind power. Energy Policy, 48, 83-87.

Scott, W., (2008). Institutions and Organizations: Ideas and Interests, 3rd ed. Los Angeles, CA.: Sage Publications.

Wolsink, M. (2010). Contested environmental policy infrastructure: Socio-political acceptance of renewable energy, water, and waste facilities. Environmental Impact Assessment Review, 30(5), 302-311.

Breukers, S., & Wolsink, M. (2007). Wind energy policies in the Netherlands: Institutional capacity-building for ecological modernisation. Environmental Politics, 16(1), 92-112.

Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy policy, 35(5), 2683-2691.

Wolsink, M. (2012). The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renewable and Sustainable Energy Reviews, 16(1), 822-835.

Wolsink, M. (2020). Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids. Renewable and Sustainable Energy Reviews, 127, 109841.

Urmee, T., & Md, A. (2016). Social, cultural and political dimensions of off-grid renewable energy programs in developing countries. Renewable Energy, 93, 159-167.

Camagni, R., Capello, R., & Nijkamp, P. (1998). Towards sustainable city policy: an economy-environment technology nexus. Ecological economics, 24(1), 103-118.

Van Der Schoor, T., & Scholtens, B. (2015). Power to the people: Local community initiatives and the transition to sustainable energy. Renewable and sustainable energy reviews, 43, 666-675.

Scotti, I., & Minervini, D. (2017). Performative connections: translating sustainable energy transition by local communities. Innovation: The European Journal of Social Science Research, 30(3), 350-364.

Haggett, C., & Aitken, M. (2015). Grassroots energy innovations: The role of community ownership and investment. Current Sustainable/Renewable Energy Reports, 2(3), 98-104.

Müggenburg, H., Tillmans, A., Schweizer-Ries, P., Raabe, T., & Adelmann, P. (2012). Social acceptance of PicoPV systems as a means of rural electrification—A socio-technical case study in Ethiopia. Energy for Sustainable Development, 16(1), 90-97.

Walker, G., Devine-Wright, P., Hunter, S., High, H., & Evans, B. (2010). Trust and community: Exploring the meanings, contexts and dynamics of community renewable energy. Energy policy, 38(6), 2655-2663.

Pfister, T., Suhari, M., & Glück, S. (2016). Energy, society, and culture–transforming the order of energy (part I). Innovation: The European Journal of Social Science Research, 29(3), 219-221.

Warner, M. E. (2008). Reversing privatization, rebalancing government reform: Markets, deliberation and planning. Policy and society, 27(2), 163-174.

Koirala, B. P., Koliou, E., Friege, J., Hakvoort, R. A., & Herder, P. M. (2016). Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Reviews, 56, 722-744.

Fast, S. (2013). Social acceptance of renewable energy: Trends, concepts, and geographies. Geography Compass, 7(12), 853-866.

Jasanoff, S., & Kim, S. H. (2013). Sociotechnical imaginaries and national energy policies. Science as culture, 22(2), 189-196.

Laufer, D., & Schäfer, M. (2011). The implementation of Solar Home Systems as a poverty reduction strategy—A case study in Sri Lanka. Energy for sustainable Development, 15(3), 330-336.

Betakova, V., Vojar, J., & Sklenicka, P. (2015). Wind turbines location: How many and how far?. Applied Energy, 151, 23-31.

Pasqualetti, M. J., & Schwartz, C. (2011). Siting solar power in Arizona: a public value failure? In: Devine-Wright, P. (ed.) Siting solar power in Arizona: a public value failure? Earthscan, London. From NIMBY to participation, 167-185.

Wolsink, M. (2007). Wind power implementation: the nature of public attitudes: equity and fairness instead of ‘backyard motives’. Renewable and sustainable energy reviews, 11(6), 1188-1207.

Phadke, R. (2011). Resisting and reconciling big wind: middle landscape politics in the New American West. Antipode, 43(3), 754-776.

Gee, K. (2010). Offshore wind power development as affected by seascape values on the German North Sea coast. Land use policy, 27(2), 185-194.

Haggett, C. (2011). Understanding public responses to offshore wind power. Energy Policy, 39(2), 503-510.

Gross, C. (2007). Community perspectives of wind energy in Australia: The application of a justice and community fairness framework to increase social acceptance. Energy policy, 35(5), 2727-2736.

Jobert, A., Laborgne, P., & Mimler, S. (2007). Local acceptance of wind energy: Factors of success identified in French and German case studies. Energy policy, 35(5), 2751-2760.

Breukers, S., & Wolsink, M. (2007). Wind power implementation in changing institutional landscapes: An international comparison. Energy policy, 35(5), 2737-2750.

Van der Horst, D. (2007). NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies. Energy policy, 35(5), 2705-2714.

Maruyama, Y., Nishikido, M., & Iida, T. (2007). The rise of community wind power in Japan: Enhanced acceptance through social innovation. Energy Policy, 35(5), 2761-2769.

Sauter, R., & Watson, J. (2007). Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy, 35(5), 2770-2779.

Huijts, N. M., Midden, C. J., & Meijnders, A. L. (2007). Social acceptance of carbon dioxide storage. Energy policy, 35(5), 2780-2789.

Troncoso, K., Castillo, A., Masera, O., & Merino, L. (2007). Social perceptions about a technological innovation for fuelwood cooking: Case study in rural Mexico. Energy policy, 35(5), 2799-2810.

Mallett, A. (2007). Social acceptance of renewable energy innovations: The role of technology cooperation in urban Mexico. Energy policy, 35(5), 2790-2798.

International Energy Agency IEA, (2016). Mexico Energy Outlook. Paris, France: IEA. URL:

Secretaría de Energía SENER, (2013). Prospectiva de Energías Renovables 2013-2027. México: SENER. URL:

OECD, (1993). OECD Core Set of Indicators for Environmental Performance Reviews - A synthesis report by the Group on the State of the Environment. Environment Monographs 83, 1–39. URL:

Huang, L., Wu, J., & Yan, L. (2015). Defining and measuring urban sustainability: a review of indicators. Landscape ecology, 30(7), 1175-1193.

Morse, S. (2015). Developing sustainability indicators and indices. Sustainable Development, 23(2), 84-95.

United Nations, (2007). Indicators of Sustainable Development: Guidelines and Methodologies. New York, USA: United Nations. URL:

Singh, R. K., Murty, H. R., Gupta, S. K., & Dikshit, A. K. (2009). An overview of sustainability assessment methodologies. Ecological indicators, 9(2), 189-212.

Van de Kerk, G., & Manuel, A. R. (2008). A comprehensive index for a sustainable society: The SSI—the Sustainable Society Index. Ecological Economics, 66(2-3), 228-242.

U.S. Department of Energy. Transparent Cost Database. LCOE.

NREL, (2020). Annual Technology Baseline. Electricity Data Overview. [Online]. Available:

García, E. R. S., & Morales-Acevedo, A. (2014). Optimizing the energy portfolio of the Mexican electricity sector by 2050 considering CO2eq emissions and life cycle assessment. Energy Procedia, 57, 850-859.

Pasqualetti, M. J. (2011). Social barriers to renewable energy landscapes. Geographical review, 101(2), 201-223.

IMCO, (2016). México: Anatomía de la corrupción. [Online]. Available:

Programa de las Naciones Unidas para el Desarrollo, PNUD. (2019). Informe de Desarrollo Humano Municipal 2010-2015. Transformando México desde lo local. Ciudad de México, México: PNUD. URL:

Huber Bernal, G., & Mungaray Lagarda, A. (2017). Competitiveness indices in Mexico. Gestión y política pública, 26(1), 167-218. URL:

Guadalupe Vargas-Hernandez, J., & Bautista Ramirez, M. L. (2016). Bussines structure and competitiveness in Mexico. 3C EMPRESA, 5(3), 24-51.

Centro Nacional de Control de Energía CENACE, (2020). Informe de la Tecnología de Generación de Referencia. Ciudad de México, México: CENACE. URL:

SENER, (2021). Sistema de Información Energética | Generación bruta por tecnología. [Online]. Available:

SENER, (2020). Anexo II. Reporte de avance de enegías limpias, Mexico City. [Online]. Available:

How to Cite
Pérez-Denicia, E., Fernández-Luqueño, F. ., & Vilariño-Ayala, D. . (2021). Suitability assessment for electricity generation through renewable sources: towards sustainable energy production. CT&F - Ciencia, Tecnología Y Futuro, 11(1), 109–122.


Download data is not yet available.
Scientific and Technological Research Articles