Improvement of lab-scale production of microalgal carbohydrates for biofuel production

  • Silvia-Juliana Jerez-Mogollón Universidad Industrial de Santander, Bucaramanga, Colombia
  • Laura-Viviana Rueda-Quiñonez Universidad Industrial de Santander, Bucaramanga, Colombia
  • Laura-Yulexi Alfonso-Velazco Universidad Industrial de Santander, Bucaramanga, Colombia
  • Andrés-Fernando Barajas-Solano Universidad Industrial de Santander, Bucaramanga, Colombia
  • Crisóstomo Barajas-Ferreira Universidad Industrial de Santander, Bucaramanga, Colombia
  • Viatcheslav Kafarov Universidad Industrial de Santander, Bucaramanga, Colombia
Keywords: Chlorella vulgaris,, Mixotrophic culture, Glucose, Xylose, Microalgae, Biomass, Sodium acetate treatment, Sodium nitrate treatment

Abstract

This work studied the improvement of biomass and carbohydrate (glucose and xylose) lab–scale productivity in Chlorella vulgaris UTEX 1803 through the use of the carbon/nitrogen ratio. In order to do so, mixotrophic cultures were made by the modification of initial concentration of CH3COONa (5, 10 and 20 mM) and NaNO3 (0.97, 1.94 and 2.94 mM). All treatments were maintained at 23 ± 1ºC, with light/dark cycles of 12h : 12h for 5 days.
It was found that in addition to the carbon/nitrogen ratio, time also influences the concentration of biomass and carbohydrates. The treatment containing 10 mM acetate: 1.94 mM nitrate, reached a concentration of 0.79 g/L of biomass, 76.9 μg/mL of xylose and 73.7 μg/mL of glucose in the fifth day. However, the treatment
containing 20 mM acetate: 0.97 mM nitrate produced 1.04 g/L of biomass, 78.9 μg/mL of xylose and 77.2 μg/mL of glucose in the third day, while in the same day the treatment containing 0 mM acetate: 2.94 mM nitrate, produced 0.55 g/L of biomass, 40.2 μg/mL of xylose and 31.3 μg/mL of glucose.
The use of carbon/nitrogen ratios improved biomass productivity (from 0.55 to 1.04 g/L) as well as xylose (from 40.2 to 78.9 μg/mL) and glucose (from 31.3 to 77.2 μg/mL) concentration, representing an improvement of up to two times the production of both biomass and carbohydrates in only 3 days of culture.

References

Agren, G. (2004). The C:N:P stoichi ometry of autotrophs theory and observations. Ecol. Lett., 7(3), 185–191.
Banerjee, A., Sharma, R., Chisti, Y. & Banerjee, U. (2002).
Botryococcus braunii: A renewable source of hydrocarbons and other chemicals. Crit. Rev. Biotechnol., 22(3),245–79.
Barsanti, L. & Gualtieri, P. (2006). Algae: Anatomy, Biochemistry and Biotechnology. Florida: Taylor & Francis.
Caperon, J. (1968). Population growth response of Isochrysis galbana to nitrate variation at limiting concentrations.Ecology, 49(5), 866–872.
Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K. (2009). Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int. J. Mol. Sci., 10(2), 518–532.
Chisti, Y. (1981). An unusual hydrocarbon. J. Ramsay. Soc., 27–28: 24–6.
Chisti, Y. (2007). Biodiesel from microalgae. Biotechnol. Adv., 25(3), 294–30.
Clesceri, L. S., Greenberg, A. & Eaton, A. D. (1999). Standard methods for examination of water and wastewater. 20th Edition. Washington, DC: American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF). Washington.
Combres, C., Laliberté G., Reyssac, J. & de la Noüe, J. (1994). Effect of acetate on growth and amonium uptake in the microalga Scenedesmus obliquus. Physiol. Pl.,
91(4), 729–734.
De–Philippis, R. & Vincenzini, M. (1998). Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS. Microbiol. Rev., 22(3), 151–75.
Dragone, G., Fernandes, B. D., Abreu, A. P., Vicente, A. A. & Teixeira, J.A. (2011). Nutrient limitation as a strategy for increasing starch accumulation in microalgae. App.Energy, 88(10), 3331–3335. Dubois, M., Gilles, K., Hamilton, J., Rebers, P. & Smith, F.
(1956). Colorimetric method for determination of sugarsand related substances. Anal. Chem., 28(3), 350–356.
Fábregas, J., Patiño, M., Morales, E., Cordero, B. & Otero, A. (1996). Optimal renewal rate and nutrient concentration for the production of the marine microalga Phaeodactylum tricornutum in Semicontinuous Cultures. App. Environ. Microbiol., 62(1), 266–268.
Fedorov, A., Kosourov, S., Ghirardi, M. & Seibert, M. (2005). Continuous H2 photoproduction by Chlamydomonas reinhardtii using a noveltwo–stage, sulfate
limited chemostat system. Appl. Biochem. Biotechnol., 121–124: 403 –12.
Flemming, H. & Wingender, J. (2010). The biofilm matrix. Nature. Rev. Microbiol., 8: 623–633.
Flynn, K. (1991). Algal carbon–nitrogen metabolism: a biochemical basis for modelling the interactions between nitrate and ammonium uptake. J. Plankton Res., 13(2), 373–387.
Flynn, K., Davidson, K. & Cunningham, A. (1993). Relations between carbon and nitrogen during growth of Nannochloropsis oculata (Droop) Hibberd under continuous illumination. New Phytologist, 125(4), 717–722.
Gavrilescu, M. & Chisti, Y. (2005). Biotechnology– a sustainable alternative for chemical industry. Biotechnol. Adv., 23(7–8), 471–499.
González, A. & Kafarov, V. (2011). Microalgae based biorefinery: Issues to consider. Review. CT&F – Ciencia, Tecnología y Futuro, 4(4), 5–22.
Heredia–Arroyo, T., Wei, W. & Hu, B. (2010). Oil Accumulation via heterotrophic/Mixotrophic Chlorella protothecoides. App Biochem Biotechnol., 162(7), 1978–1995.
Hernández–Benitez, P. & Rosas–Oviedo, C. (2011). Efecto de la relación carbono/nitrógeno en la productividad de biomasa de Chlorella vulgaris UTEX 1803 en fotobiorreactoresa escala de laboratorio. Tesis de pregrado Fac. Ingeniería Fisicoquímica, Universidad Industrial de Santander, Bucaramanga, Colombia, 62pp.
Hernández–Garibay, E., Zertuche–Gonzáles, J. & Pacheco– Ruíz, I. (2011). Isolation and chemical characterization of algal polysaccharides from the green seaweed Ulva clathrata (Roth) C. Agardh. J. Appl. Phycol., 23(3), 537–542.
Hitchcock, G., Goldman, J. & Dennett, M. (1986). Photosynthate partitioning in cultured marine phytoplankton metabolic patterns in a marine diatom under constant and variable light intensities. Marine. Ecol. Prog. S., 30: 77–84.
Hosikian, A., Lim, S., Halim, R. & Danquah, M. (2010). Chlorophyll Extraction from Microalgae: A Review on the Process Engineering Aspects. Int. J. Chem. Eng,
2010: 1–11.
Huppe, H. & Turpin, D. (1994). Integration of carbon and nitrogen metabolism in plant and algal cells. Plant Physiol. Plant Mol. Biol., 45: 577–607.
Illman, A., Scragg, A. & Shales, S. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol., 27(8), 631–635.
Kapdan, I. K. & Kargi, F. (2006). Bio–hydrogen production from waste materials. Enzyme Microb. Technol., 38(5), 569–82.
Lahaye, M. (1991). Marine algae as sources of fibers: Determination of soluble and insoluble dietary fiber contents in some ‘sea vegetables’. J. Sci. Food. Agricul.,
54(4), 587–594.
Lahaye, M., Gómez, J., Jiménez, M. & García, G. (1995). Natural decoloration, composition and increase in dietary fibre content of an edible marine algae, Ulva rigida (Chlorophyta), grown under different nitrogen conditions. J. Sci. Food. Agricul., 68(1), 99–104.
Lahaye, M. & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Bio–macromolecules, 8(6), 1765–1774.
Laliberté, G. & de la Noüie, J. (1993). Auto–, hetero–, and mixotrophic growth of Chlamydomonas humicola (CMLOROIMIYCKAK)) on acetate. J. Phycol, 29(5), 612–620.
Laliberté, G. & Hellebust, J. (1989). Regulation of poline content of Chlorella autotrophica in response to change in salinity. Con. J. Bot, 67(7), 1959–1965.
Lin, C. & Lay, C. (2004). Carbon/nitrogen–ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy, 29(1), 41–45.

Melis, A. (2002). Green alga hydrogen production: progress, challenges and prospects. Int. J. Hydrogen Energy, 27(11–12), 1217–1228.
Molina, E., Sánchez, J., Garcia, F., Fernández, J., Acién, F. & Urda, J. (1995). Biomass and eicosapentaenoic acid productivities from an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor. App. Microb. Biotechnol., 42: 658–663.
Morales, E. (1996). Productos agrícolas para el cultivo de microalgas marinas. Tesis Doctoral, Departamento de Microbiologia y Parasitologia, Universidad de Santiago de Compostela, España, 149pp.
Nagle, N. & Lemke, P. (1990). Production of methyl–ester fuel from microalgae. Appl. Biochem. Biotechnol., 24(5), 355–361.
Ray, B. (2006). Polysaccharides from Enteromorpha compressa: isolation, purification and structural features. Carbohydrate Polyms., 66(3), 408–416.
Rodjaroen, S., Juntawong, N., Mahakhant, A. & Miyamoto, K. (2007). High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. Kasetsart J. (Nat. Sci.) 41: 570–575.
Sawayama, S., Inoue, S., Dote, Y. & Yokoyama, S. (1995). CO2 fixation and oil production through microalga. Energy Convers. Manag., 36(6–9), 729–731.
Scragg, A., Illman, A., Carden, A. & Shales, S. (2002). Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy, 23(1), 67–73.
Sheehan, J., Dunahay, T., Benemann, J. & Roessler, P. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program biodiesel from algae. National Renewable Energy Laboratory, Golden, Close–Out Report, NREL/TP, 580–24190.
Solovchenko, A., Khozin–Goldberg, I., Didi–Cohen, S., Cohen, Z. & Merzlyak, M. (2008). Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol., 20(3), 245–251.
Soojin, L., Younghoon, O., Donghyun, K., Doyeon, K., Choulgyun, L. & Jinwon, L. (2011). Converting carbohydrates extracted from marine algae into ethanol using various ethanolic Escherichia coli strains. Appl . Biochem. Biotechnol., 164: 878–888.
Spolaore, P., Joannis–Cassan, C., Duran, E. & Isambert, A. (2006). Commercial applications of microalgae. Review. J. Biosci. Bioeng., 101(2), 87–96.
Takagi, M., Watanabe, K., Yamaberi, K. & Yoshida, T. (2000). Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp UTEX LB1999. Appl. Microbiol. Biotechnol., 54(1), 112–117.
Thompson, P., Guo, M. & Harrison, P. (1992). Effects of variation in temperature. i. on the biochemical composition of eight species of marine phytoplankton. J. Phycol., 28(4), 481–488.
Turpin, D. (1991). Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol., 27(1), 14–20.
Turpin, D., Elriffi, I., Birk, D., Wegner, H. & Holmes, J. (1988). Interactions between photosynthesis, respiration and nitrogen assimilation in microalgae. Canadian J. Bot., 66(10), 2083–2097.
Vonshak, A. (1990). Recent advances in microalgal biotechnology. Biotech. Adv., 8(4), 709–722.
Xiong, W., Li, X. F., Xiang, J. Y. & Wu, Q. (2008). High–density fermentation of microalga Chlorella protothecoides in bioreactor for microbio–diesel production. App. Microbiol. Biotechnol., 78(1), 29–36.
Zhongquan, S., Gizaw, Y. & BeMiller, J. N. (2012) Extraction of polysaccharides from a species of Chlorella. Carbohydrate Polym., 90(1), 1– 7.
Zhou, N., Zhang, Y., Wu, X., Gong, X. & Wang, Q. (2011). Hydrolysis of Chlorella biomass for fermentable sugars in the presence of HCl and MgCl2. Bioresource Technol., 102(21), 10158–10161.
How to Cite
Jerez-Mogollón, S.-J. ., Rueda-Quiñonez, L.-V., Alfonso-Velazco, L.-Y. ., Barajas-Solano, A.-F., Barajas-Ferreira, C. ., & Kafarov, V. . (2012). Improvement of lab-scale production of microalgal carbohydrates for biofuel production. CT&F - Ciencia, Tecnología Y Futuro, 5(1), 103–116. https://doi.org/10.29047/01225383.209

Downloads

Download data is not yet available.
Published
2012-11-30
Section
Scientific and Technological Research Articles

Altmetric

QR Code

Some similar items: