Microalgae based biorefinery: issues to consider

  • Viatcheslav Kafarov Universidad Industrial de Santander (UIS)
  • Ángel Darío González Delgado Universidad Industrial de Santander (UIS)
Keywords: Biofuels, Biomass processing, Bioindustries, Biomass, Microalgae, Biorefinery

Abstract

Biorefining is sustainable biomass processing to obtain energy, biofuels and high value products through processes and equipment for biomass transformation. The biorefinery concept has been identified as the most promising way to create a biomass-based industry. Microalgae are classified as promising candidates in biorefinery processes because they are particularly important for obtaining multiple products. This review article describes the biorefinery concept taking into account its different interpretations and comparing it with the traditional biomass transformation processes. It describes the general characteristics of microalgae, and their potential to be used as a raw material in the biorefinery process. The review focuses on the state of the art of products obtained from microalgae for the biofuel industry, mainly for biodiesel production, and the different methods to extract oil for biodiesel production as well as other products. Based on this information, several aspects are suggested to be taken into account for the development of a topology for a microalgae-based biorefinery.

References

Álvarez, Y., González, A. & Kafarov, V. (2011). Develop- ment of a methodology for microalgae oil extraction with ethanol/hexane using thermal and chemical cell disruption. The First International Conference on Algal Biomass, Biofuels and Byproducts, St Louis, United States. P3-24.

Amaro, H., Guedes, C. & Malcata, X. (2011). Advances and perspectives in using microalgae to produce biodiesel. Applied Energy, 88 (10), 3402-3410.
https://doi.org/10.1016/j.apenergy.2010.12.014

Amin, M. & Wijffels, R. (2004). Milking of microalgae. Trends. Biotechnol., 22 (4), 189-194.
https://doi.org/10.1016/j.tibtech.2004.02.009

Amin, S. (2009). Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manage., 50 (7), 1834-1840.
https://doi.org/10.1016/j.enconman.2009.03.001

Anderson, J. & Sorek, B. (2008). Microalgae: The fuel of tomorrow. Ninth Annual Freshman Conference. Pittsburgh, Pennsylvania, United States. 9112:C7

Berrios, M., Martín, M. A., Chica, A. F. & Martín, A. (2010). Study of esterification and transesterification in biodiesel production from used frying oils in a closed system. Chem. Eng. J., 160 (2), 473-479.
https://doi.org/10.1016/j.cej.2010.03.050

Biofuels Research Advisory Council. (2006). Biofuels in the European union: A vision for 2030 and beyond. Final draft report. [Report in PDF format].[Accessed: June 13, 2011]. Available at:

Bligh, E. G. & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37 (8), 911-917.
https://doi.org/10.1139/o59-099

Bush, R. A. & Hall, K. M. (2006). Process for the production of ethanol from algae. U.S. Patent 7,135,308.

Carriquiry, M., Xiaodong, D. & Govinda, R. (2011). Second generation biofuels: Economics and policies. Energy Policy, 39 (7), 4222-4234.
https://doi.org/10.1016/j.enpol.2011.04.036

Chen, C. Y., Yeh, K. L., Aisyah, R., Lee, D. J. & Chang, J. S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technol., 102 (1), 71-81.
https://doi.org/10.1016/j.biortech.2010.06.159

Cherubini, F. (2010).The biorefinery concept: using biomass instead of oil for producing energy and chemicals. Energy Convers. Manage., 51 (7), 1412-1421.
https://doi.org/10.1016/j.enconman.2010.01.015

Chester, T. L. & Pinkston, J. D. (2004). Supercritical fluid and unified chromatography, Anal. Chem., 76 (16), 4606-4613.
https://doi.org/10.1021/ac040088p

Cheung, P. C. K. (1999). Temperature and pressure effects on supercritical carbon dioxide extraction of n_3 fatty acids from red seaweed. Food Chemistry, 65 (3), 399-403.
https://doi.org/10.1016/S0308-8146(98)00210-6

Chisti, Y. (2007). Biodiesel from microalgae. Biot. Adv., 25 (3), 294-306.
https://doi.org/10.1016/j.biotechadv.2007.02.001

Chisti, Y. (2008). Biodiesel from microalgae beats bioethanol. Trends Biotechnol., 26 (3), 126-131.
https://doi.org/10.1016/j.tibtech.2007.12.002

Clarens, A., Resurreccion, E. P., White, M. A. & Colosi, L. A. (2010). Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ. Sci. Technol., 44 (5), 1813-1819.
https://doi.org/10.1021/es902838n

Córdoba, L. S., López, L. M., González, A. D. & Kafarov, V. (2010). Microalgae lipid extraction by combining cell disruption and Soxhlet extraction method for biodiesel production. (inspanish). XXIX Latin American Chemistry Congress, Cartagena, Colombia. MYE 113.

Craggs, R., McAuley, P. & Smith, V. (1997). Wastewater nu- trient removal by marine microalgae grown on a corrugated raceway. Water Research, 31 (7), 1701-1707.
https://doi.org/10.1016/S0043-1354(96)00093-0

Cravotto, G., Boffa, L., Mantegna, S., Perego, P., Avogadro, M. & Cintas, P. (2008). Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason. Sonochem, 15 (5), 898-902.
https://doi.org/10.1016/j.ultsonch.2007.10.009

Danquah, M. K., Ang, L., Uduman, N., Moheimani, N. & Forde, G. M. (2009). Dewatering of microalgal culture for biodiesel production: exploring polymer flocculation and tangential flow filtration. J. Chem. Technol. Biotechnol, 84 (7), 1078-1083.
https://doi.org/10.1002/jctb.2137

Demirbas, A. (2007). Progress and recent trends in biodiesel fuels. Energy Convers. Manage., 50 (1), 14-34.
https://doi.org/10.1016/j.enconman.2008.09.001

Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manage, 49 (8), 2106-2116.
https://doi.org/10.1016/j.enconman.2008.02.020

Dias, M. O. S., Modesto, M., Ensinas, A. V., Nebra S. A., Maciel-Filho, R. & Rossell, C. E. V. (2010). Improving bioethanol production from sugarcane: Evaluation of distillation, thermal integration and cogeneration systems Energy, 36 (6), 3691-3703.
https://doi.org/10.1016/j.energy.2010.09.024

Ehimen, E. A., Sun, Z. F. & Carrington, C. G. (2010).Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89 (3), 677-684.
https://doi.org/10.1016/j.fuel.2009.10.011

Folch, J., Lees, M. & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226 (1), 497-509.

Fore, S. R., Lazarus, W., Porter, P. & Jordan, N. (2011). Economics of small-scale on-farm use of canola and soybean for biodiesel and straight vegetable oil biofuels. Biomass Bioenergy, 35 (1), 193-202.
https://doi.org/10.1016/j.biombioe.2010.08.015

Franceschin, G., Zamboni, A., Bezzo, F. & Bertucco, A. (2008). Ethanol from corn: a technical and economical assessment based on different scenarios. Chem. Eng. Res. Des., 86 (5), 488-498.
https://doi.org/10.1016/j.cherd.2008.01.001

Garibay-Hernández, A., Vázquez-Duhalt, R., Sánchez-Saavedra, M., Serrano-Carreón, L. & Martínez-Jiménez, A. (2009). Biodiesel a partir de microalgas. BioTecnología, 13 (3), 38-56.

Gerbens-Leenes, W., Hoekstra, A. Y. & Meer, van der,T. H., (2009). The water footprint of bioenergy. PNAS, 106 (25), 10219-10223.
https://doi.org/10.1073/pnas.0812619106

Goh, C. S. & Lee, K. T. (2011). Second-generation biofuel (SGB) in Southeast Asia via lignocellulosic biorefinery: Penny-foolish but pound-wise. Renew. Sust. Energ. Rev., 15 (6), 2714-2718.
https://doi.org/10.1016/j.rser.2011.02.036

Goldemberg, J., Coelho, S. T. & Guardabassi, P. (2008). The sustainability of ethanol production from sugarcane. Energy Policy, 36 (6), 2086-2097.
https://doi.org/10.1016/j.enpol.2008.02.028

Gong Bih Enterprise Limited Company. (GONG). (2002). Components of Chlorella pyrenoidosa, Gong Bih Enterprise Limited Company. [Characterization certificate scan]. [Accessed: May 5, 2011]. Available at:

González, A. D. & Kafarov, V. (2010). Design of a multifun- ctional reactor for third generation biofuels production. Chem. Eng. Transact., 21 (1), 1297-1302.

Grierson, S., Strezov, V., Ellem, G., McGregor, R. & Herbertson, J. (2009). Thermal characterisation of microalgae under slow pyrolysis conditions. J. Anal. Appl. Pyrolysis, 85 (1-2), 118-123.
https://doi.org/10.1016/j.jaap.2008.10.003

Harun, R. & Danquah M. (2011). Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem. Eng. J., 168 (3), 1079-1084.
https://doi.org/10.1016/j.cej.2011.01.088

Harun, R., Singh, M., Forde, G. M. & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sust. Energ. Rev., 14 (3), 1037-1047.
https://doi.org/10.1016/j.rser.2009.11.004

Henriques, M., Silva, A. & Rocha, J. (2007). Extraction and quantification of pigments from a marine: A simple and reproducible method. Communicating Current Research and Educational Topics and Trends in Applied Microbio- logy, 1 (1), 586-593.

Herrero, M., Ibáñez, E., Señoráns, F. J. & Cifuentes, A. (2003). Accelerated solvent extracts from Spirulinaplatensis Microalgae: determination of their antioxidant activity and analysis by Micellar Electrokinetic Chromatography. J. Chromatogr., 1047 (2), 195-203.
https://doi.org/10.1016/S0021-9673(04)01098-2

Herrero M., Cifuentes A. & Ibáñez E. (2006). Sub- and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chemistry, 98 (1), 136-148.
https://doi.org/10.1016/j.foodchem.2005.05.058

Hincapié, G., Mondragón, F. & López, D. (2011). Conventional and in situ transesterification of castor seed oil for biodiesel production. J. Fuel, 90 (4), 1618-1623.
https://doi.org/10.1016/j.fuel.2011.01.027

Hoekman, S. K. (2009). Biofuels in the U.S. challenges and opportunities. Renew. Energy, 34 (1), 14-22.
https://doi.org/10.1016/j.renene.2008.04.030

Holm-Nielsen, J. B., Al-Seadi, T. & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource. Technol., 100 (22), 5478-5484.
https://doi.org/10.1016/j.biortech.2008.12.046

IEA Bioenergy, (2007). Task 42 on biorefineries: coproduction of fuels, chemicals, power and materials from biomass. Minutes of the third Task meeting. International Energy Agency. [Report in PDF for- mat]. [Accessed: May 5, 2011]. Available at: .

Kamm, B., Kamm, M., Gruber, P. R. & Kromus, S. (2006). Biorefinery systems - an overview. In: Kamm B, Gruber PR, & Kamm M, editors. Biorefineries - industrial processes and products: Status quo and future directions (Vol. 1. Weinheim, Germany. Wiley-VCHVerlag GmbH.
https://doi.org/10.1002/9783527619849

King, J. (2000). Advances in critical fluid technology for food processing. Food. Sci. Tech. Today, 14 (4), 186-191.

Kumar, P., Barrett, D. M., Delwiche, M .J. & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res., 48 (8), 3713-3729.
https://doi.org/10.1021/ie801542g

Lee, S. J., Yoon, B. D. & Oh, H. M. (1998). Rapid method for the determination of lipid from the green alga Botryococcus braunii, Biotechnol. Tech., 12 (7), 553-556.

Lee, J. Y., Yoo, C., Jun, S. Y., Ahn, C. Y. & Oh, H. M.(2010). Comparison of several methods foreffective lipid extraction from microalgae. Bioresource. Technol., 101 (1), 575-577.
https://doi.org/10.1016/j.biortech.2009.03.058

Li, Y., Ruan, R., Chen, P. L., Liu, Z., Pan, X. & Lin, X. (2004). Enzymatic hydrolysis of corn stover pretreated by combined dilute alkaline treatment and homogenization. Trans. ASAE 47 (3), 821-825.
https://doi.org/10.13031/2013.16078

Li, Y. Q., Horsman, M., Wang, B., Wu, N. & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81 (4), 629-636.
https://doi.org/10.1007/s00253-008-1681-1

Manirakiza, P., Covaci, A. & Schepens, P. (2001).Comparative study on total lipid determination using Soxhlet, Roese- Gottlieb, Bligh & Dyer, and modified Bligh & Dyer extraction methods. J. Food. Acid Gas Anal., 14 (1), 93-100.
https://doi.org/10.1006/jfca.2000.0972

Martínez, M., Sánchez, S., Jiménez, J., El-Yousfi, F. & Muñoz, L. (2000). Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus.Bioresource. Technol., 73 (3), 263-272.
https://doi.org/10.1016/S0960-8524(99)00121-2

Mata, T. M., Martins, A. A. & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy. Rev., 14 (1), 217-232.
https://doi.org/10.1016/j.rser.2009.07.020

Mekonnen, M. M. & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci., 15 (1), 1577-1600.
https://doi.org/10.5194/hess-15-1577-2011

Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J. & Morais, R. (2001). Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: effects onastaxanthin recovery and implications for bioavailability. J. App. Phycol., 13 (1), 19-24.
https://doi.org/10.1023/A:1008183429747

Mendes, R. L., Fernandes, H. L., Coelho, J. P., Reis, E. C., Cabral, J. M. S., Palavra, A. F. & Novais, J. M. (1995). Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris. Food Chemistry, 53 (1), 99-103.
https://doi.org/10.1016/0308-8146(95)95794-7

Mendes, R. L., Nobre, B. P., Cardoso, M. T., Pereira, A. P. & Palavra, A. F. (2003). Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg. Chim. Acta, 356 (1), 328-334.
https://doi.org/10.1016/S0020-1693(03)00363-3

Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q. & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renew. Energy. 34 (1), 1-5.
https://doi.org/10.1016/j.renene.2008.04.014

Minowa, T., Yokoyama, S., Kishimoto, M. & Okakurat, T. (1995). Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel, 74 (12), 1735-1738.
https://doi.org/10.1016/0016-2361(95)80001-X

Moen, E. (2008). Biological degradation of brown seaweeds. The potential of marine biomass for anaerobic biogas pro- duction. Scottish Association for Marine Science Oban. Argyll, Scotland.

Molina-Grima, E., Acién-Fernández, F. G., García-Ca- macho, F. & Chisti, Y. (1999). Photobioreactors: light regime, mass transfer, and scaleup. J. Biotechnol., 70 (1), 231-247.
https://doi.org/10.1016/S0168-1656(99)00078-4

Molina-Grima, E., Robles-Medina, A., Giménez-Giménez, A., Sánchez-Pérez, J., García-Camacho, F. & García-Sánchez, J. (1994). Comparison between extraction of lipids and fatty acids from microalgal biomass, J. Am. Oil Chem. Soc., 71 (9), 955-959.
https://doi.org/10.1007/BF02542261

Molina, E., Fernández, J., Acién, F. & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. J. Bio- technol., 92 (2), 113-131.
https://doi.org/10.1016/S0168-1656(01)00353-4

Mortimer, N. D., Elsayed, M. A. & Horne, R. E. (2004). Energy and greenhouse gas emissions for bioethanol production from wheat grain and sugar beet. Final Report. UK: British Sugar Plc. [Text document]. [Accesed: May 5, 2011]. Available at: .

Mueller, S., Anderson, J. & Wallington, T. (2011). Impact of biofuel production and other supply and demand factors on food price increases in 2008. Biomass Bioenergy, 35 (5), 1623-1632.
https://doi.org/10.1016/j.biombioe.2011.01.030

Naik, S. N., Goud, V. V., Rout, P. K. & Dalai, A. K. (2010). Production of first and second generation biofuels: a compre- hensive review. Renew. Sust. Energ. Rev., 14 (2), 578-597.
https://doi.org/10.1016/j.rser.2009.10.003

Nigam, P. & Singh, A. (2011). Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci., 37 (1), 52-68.
https://doi.org/10.1016/j.pecs.2010.01.003

Ojeda, K., Ávila, O., Suárez, J. & Kafarov, V. (2010). Eva- luation of technological alternatives for process integration of sugarcane bagasse for sustainable biofuels production - part 1. Chem. Eng. Res. Des., 89 (3), 270-279.
https://doi.org/10.1016/j.cherd.2010.07.007

Olivares-Carrillo, P. & Quesada-Medina, J. (2011), Synthesis of biodiesel from soybean oil using supercritical methanol in a one-step catalyst-free process in batch reactor. J. Supercrit. Fluid., 58 (3), 378-384.
https://doi.org/10.1016/j.supflu.2011.07.011

Otsuka, K. & Yoshino, A. (2004). A fundamental study on anaerobic digestion of sea lettuce. Ocean'04 - MTS/IEEE Techno-Ocean'04: Bridges across the Oceans - Conference Proceedings. Ocean'04 - MTS/IEEE Techno-Ocean'04. [Text document]. [Accessed: May 5, 2011]. Available at:
https://doi.org/10.1109/OCEANS.2004.1406392

Peralta, Y., Sánchez, E. & Kafarov, V. (2010). Exergy analysis for third generation biofuel production from microalgae biomass. Chem. Eng.Transact., 21 (1), 1363-1368.

Pernet, F. & Tremblay, R. (2003). Effect of ultrasonication and grinding on the determination of lipid class content of microalgae harvested on filters. Lipids, 38 (11), 1191-1195.
https://doi.org/10.1007/s11745-003-1178-6

Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology. Ames, Iowa, Unites States: Blackwell Science.

Robles-Medina, A., Molina-Grima, E., Giménez-Giménez, A. & Ibáñez-González, M. J. (1998), Downstream processing of algal polyunsaturated fatty acids. Biotech. Adv., 16 (3), 517-580.
https://doi.org/10.1016/S0734-9750(97)00083-9

Santana, G. C. S., Martins, P. F., de Lima da Silva, N., Batistella, C. B., Maciel-Filho, R. & Wolf-Maciel, M. R. (2010) Simulation and cost estimate for biodiesel production using castor oil. Chem. Eng. Res. Des., 88 (5-6), 626-632.
https://doi.org/10.1016/j.cherd.2009.09.015

Schenk, P. M., Thomas-Hall, S. R., Stephens, E. Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. & Hankamer, B. (2008). Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. Bioenerg. Res., 1 (1), 20-43.
https://doi.org/10.1007/s12155-008-9008-8

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., Tokgoz, S., Hays, D. & Yu, T. H. (2008). Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319 (5867), 1238-1240.
https://doi.org/10.1126/science.1151861

Shi, D., Deng, Y. & Zhao, X. (2004).Cyanobacterial genetic engineering technology for recombinant pharmaceutical products. National Medicine Bioengineering Seminar of Chinese Society of Biotechnology: 54.

Singh, S. P. & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew. Sustain. Energ. Rev., 14 (1), 200-216.
https://doi.org/10.1016/j.rser.2009.07.017

Spath, P. L. & Dayton, D. C. (2003). Preliminary screening - technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. NREL task no. BBB3.4210, Colorado. U.S.A.
https://doi.org/10.2172/15006100

Taylor, G. (2008). Biofuels and biorefinery concept. Energy Policy, 36 (12), 4406-4409.
https://doi.org/10.1016/j.enpol.2008.09.069

Ueda, R., Hirayama, S., Sugata, K. & Nakayama, H. (1996). Process for the production of ethanol from microalgae. U.S. Patent 5: 578-472.

Vázquez-Duhalt, R. & Arredondo-Vega, B. (1991). Haloadaptation of the green alga Botryococcus braunii (race a). Phytochemistry, 30 (9), 2919-2925.
https://doi.org/10.1016/S0031-9422(00)98225-6

Ward, O. P. & Singh, A. (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochem., 40 (12), 3627-3652.
https://doi.org/10.1016/j.procbio.2005.02.020

Wyman, C. E. (2001). Economics of a biorefinery for copro¬duction of succinic acid, ethanol, and electricity. Abstracts of Papers of the American Chemical Society. 221 P. U119- U119. Part 1 Meeting Abstract: 72-BIOT.

Xiong, W., Fu, Y., Zeng, F. & Guo, Q. (2011). An in situ reduction approach for bio-oil hydroprocessing. Fuel Process. Tech., 92 (8), 1599-1605.
https://doi.org/10.1016/j.fuproc.2011.04.005

Xu, H., Miao, X. & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol., 126 (4), 499-507.
https://doi.org/10.1016/j.jbiotec.2006.05.002

Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M. & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technol., 102 (1), 159-165.
https://doi.org/10.1016/j.biortech.2010.07.017

Yusuf, N. N. A. N., Kamarudin, S. K. & Yaakub, Z. (2011). Overview on the current trends in biodiesel production. Energy Convers. Manage., 52 (7), 2741-2751.
https://doi.org/10.1016/j.enconman.2010.12.004
How to Cite
Kafarov, V., & González Delgado, Ángel D. (2011). Microalgae based biorefinery: issues to consider. CT&F - Ciencia, Tecnología Y Futuro, 4(4), 5-21. Retrieved from https://ctyf.journal.ecopetrol.com.co/index.php/ctyf/article/view/292

Downloads

Download data is not yet available.
Published
2011-12-15
Section
Scientific and Technological Research Articles

More on this topic