Adsorption-desorption of n–c7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration

  • Farid Cortés Facultad de Minas, Universidad Nacional de Colombia Sede Medellín
  • Tatiana Montoya Facultad de Minas, Universidad Nacional de Colombia Sede Medellín
  • Sócrates Acevedo Universidad Central de Venezuela
  • Nashaat N. Nassar University of Calgary
  • Camilo Andrés Franco Facultad de Minas, Universidad Nacional de Colombia Sede Medellín
Keywords: Adsorption, desorption, asphaltene, reversibility, wettability, silica


In this work, a study of the adsorption/desorption of n–C7 asphaltenes at low and high concentrations (100 – 30000 mg/L) was performed for which the effects of adsorbent particle size (nano and microsilica), pressure, solvent, and temperature were evaluated. Adsorption/desorption tests on different silica surfaces were performed in batch-mode using UV−vis spectrophotometry and thermogravimetric analyses. Owing to its high surface area and dispersibility, nanosilica adsorbed higher quantities of n–C7 asphaltenes than microsilica. Asphaltene desorption from nanosilica surface was significant, while the desorption from microsilica surfaces was insignificant, suggesting a higher adsorption potential for the latter. Asphaltene adsorption increased with pressure and decreased with temperature. Type of solvent plays a significant role on the asphaltene desorption. The wettability tests for virgin nanosilica and nanosilica contained adsorbed asphaltenes showed that even at high asphaltene loading, the nanoparticles maintained its water-wet nature.


Acevedo, S., Ranaudo, M. A., García, C., Castillo, J., & Fernández, A. (2003). Adsorption of asphaltenes at the toluene-silica interface: a kinetic study. Energ. Fuel., 17 (2), 257-261. DOI: 10.1021/ef020104q.

Acevedo, S., Ranaudo, M. A., García, C., Castillo, J., Fernández, A., Caetano, M., & Goncalvez, S. (2000). Importance of asphaltene aggregation in solution in determining the adsorption of this sample on mineral surfaces. Colloid. Surf. A., 166 (1-3), 145-152. DOI: S0927-7757(99)00502-6.

Acevedo, S. C., Castillo, J., & Del Carpio, E. H. N., (2014). Precipitation of asphaltenes and resins at the Toluene– Silica interface: an example of precipitation promoted by local electrical fields present at the Silica–Toluene interface. Energ. Fuel., 28 (8), 4905-4910. DOI: 10.1021/ef5008984.

Adams, J. J., (2014). Asphaltene Adsorption, a literature review. Energ. Fuel., 28 (5), 2831-2856. DOI: 10.1021/ef500282p.

Al-Maamari, R. S. & Buckley, J. S. (2003). Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reserv. Eval. Eng., 6 (4): 210-214. DOI: https://doi. org/10.2118/84938-PA

Ariza-León, E., Molina-Velasco, D. R., Chaves-Guerrero, A. (2014) Review of studies on asphaltene-wax interaction and the effect threreof on crystallization. CT&F -Cienc. Tecnol. Fut., 5 (5), 39-53.

Asomaning, S., (2003). Test methods for determining asphaltene stability in crude oils. Pet. Sci. Technol. , 21 (3-4), 581-590. DOI:

Bai, Y. & Bai, Q. (2005). Subsea pipelines and risers. Elsevier.

Balabin, R. M., Syunyaev, R. Z., Schmid, T., Stadler, J., Lomakina, E. I., & Zenobi, R. (2010). Asphaltene adsorption onto an iron surface: combined near-infrared (NIR), Raman, and AFM study of the kinetics, thermodynamics, and layer structure. Energ. Fuel., 25 (1), 189-196. DOI: 10.1021/ ef100779a.

Cortés, F. B., Mejía, J. M., Ruiz, M. A., Benjumea, P. & Riffel, D. B. (2012). Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energ. Fuel., 26 (3): 1725-1730. DOI: 10.1021/ef201658c

Diallo, M., Cagin, T., Faulon, J., & Goddard, W. (2000). Chapter 5 in Asphaltenes and Asphalts, 2. Developments in Petroleum Science B, 40: 103-125.

Du Petrole, F., & Malmaison, F. R., (1990). Evaluation of reservoir wettability and its effect on oil recovery, Interfacial Phenomena in Petroleum Recovery. Boca Raton: CRC Press.

Dubey, S., & Waxman, M., (1991). Asphaltene adsorption and desorption from mineral surfaces. SPE Reservoir Eng., 6 (03), 389-395. DOI: 10.2118/18462-PA.

Dudášová, D., Flåten, G. R., Sjöblom, J., & Øye, G. (2009). Study of asphaltenes adsorption onto different minerals and clays: Part 2. Particle characterization and suspension stability. Colloid. Surf. A, 335 (1-3), 62-72. DOI: http://

Dudášová, D., Simon, S., Hemmingsen, P. V. & Sjöblom, J., (2008). Study of asphaltenes adsorption onto different minerals and clays: Part 1. Experimental adsorption with UV depletion detection. Colloid. Surf. A, 317(1-3): 1-9. DOI:

Ehtesabi, H., Ahadian, M. M. & Taghikhani, V. (2014). Enhanced heavy oil recovery using TiO2 nanoparticles: investigation of deposition during transport in core plug. Energ. Fuel., 29 (1), 1-8. DOI: 10.1021/ef5015605.

Fassi-Fihri, O., Robin, M., & Rosenberg, E. (1995). Wettability studies at the pore level: a new approach by the use of cryo-scanning electron microscopy. SPE Format. Eval., 10 (01), 11-19. DOI:

Franco, C., Patiño, E., Benjumea, P., Ruiz, M.A., & Cortés, F. B., (2013a). Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel, 105, 408-414. DOI:

Franco, C. A., Montoya, T., Nassar, N. N., Pereira-Almao, P., & Cortés, F. B., (2013b). Adsorption and subsequent oxidation of Colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energ. Fuel., 27 (12), 7336-7347. DOI: 10.1021/ef4018543.

Franco, C. A., Nassar, N. N., Montoya, T., & Cortés, F. B., (2014). NiO and PdO Supported on fumed silica nanoparticles for adsorption and catalytic steam gasification of Colombian C7 asphaltenes. In: J. Ambrosio, Handbook on Oil Production Research. Nova Science Publishers.

Franco, C. A., Nassar, N. N., Montoya, T., Ruíz, M. A., & Cortés, F. B. (2015). Influence of asphaltene aggregation on the adsorption and catalytic behavior of nanoparticles. Energ. Fuel., 29 (3), 1610-1621. DOI: 10.1021/ef502786e.

Franco, C. A., Nassar, N. N., Ruiz, M. A., Pereira-Almao, P., & Cortés, F. B., (2013c). Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energ. Fuel., 27 (6), 2899-2907. DOI: 10.1021/ef4000825.

Giraldo, J., Benjumea, P., Lopera, S., Cortés, F. B., & Ruiz, M. A., (2013a). Wettability alteration of sandstone cores by alumina-based nanofluids. Energ. Fuel., 27 (7): 3659-3665. DOI: 10.1021/ef4002956.

Giraldo, J., Nassar, N. N., Benjumea, P., Pereira-Almao, P., & Cortés, F.B., (2013b). Modeling and prediction of asphaltene adsorption isotherms using Polanyi’s modified theory. Energ. Fuel., 27 (6), 2908-2914. DOI: 10.1021/ ef4000837.

González, G., & Moreira, M. B., (1991). The wettability of mineral surfaces containing adsorbed asphaltene. Colloid. Surf., 58 (3), 293-302. DOI: 6622(91)80229-H.

Goual, L., & Firoozabadi, A., (2002). Measuring asphaltenes and resins, and dipole moment in petroleum fluids. AIChE J., 48 (11), 2646-2663. DOI: 10.1002/aic.690481124.

Groenzin, H., & Mullins, O. C., (1999). Asphaltene molecular size and structure. J. Phys. Chem. A, 103 (50), 11237-11245 DOI: 10.1021/jp992609w.

Guzmán, J. D., Betancur, S., Carrasco-Marín, F., Franco, C. A., Nassar, N. N. & Cortés, F. B. (2016). Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energ. Fuel., 20 (3), 2052-2059. DOI: 10.1021/acs.energyfuels.5b02841.

Hamedi Shokrlu, Y. & Babadagli, T., (2013). In-situ upgrading of heavy oil/bitumen during steam injection by use of metal nanoparticles: a study on in-situ catalysis and catalyst transportation. SPE Reserv. Eval. Eng., 16 (3), 333-344.

Hashemi, R., Nassar, N. N. & Almao, P. P., (2014a). Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: opportunities and challenges. App. Energ., 133, 374-387.

Hashemi, R., Nassar, N. N., & Pereira-Almao, P. (2012). Transport behavior of multimetallic ultradispersed nanoparticles in an oil-sands-packed bed column at a high temperature and pressure. Energ. Fuel., 26 (3): 1645-1655. DOI: 10.1021/ef201939f.

Hashemi, R., Nassar, N. N., & Pereira Almao, P., (2013a). Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: a study of hot fluid flooding for Athabasca bitumen recovery. Energ. Fuel., 27 (4): 2194-2201. DOI: 10.1021/ef3020537.

Hashemi, R., Nassar, N. N. & Pereira Almao, P., (2013b). In situ upgrading of athabasca bitumen using multimetallic ultradispersed nanocatalysts in an oil sands packed-bed column: Part 1. Produced liquid quality enhancement. Energ. Fuel., 28 (2), 1338-1350. DOI: 10.1021/ef401716h.

Hashemi, R., Nassar, N. N. & Pereira Almao, P., (2014b). In situ upgrading of athabasca bitumen using multimetallic ultradispersed nanocatalysts in an oil sands packed-bed column: Part 2. Solid analysis and gaseous product distribution. Energ. Fuel., 28 (2): 1351-1361. DOI: 10.1021/ ef401719n.

Hashemi, S. I., Fazelabdolabadi, B., Moradi, S., Rashidi, A. M., Shahrabadi, A., & Bagherzadeh, H. (2015). On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix . Appl. Nanosci., 6 (1), 71-81. DOI: 10.1007/s13204-015-0410-1.

Hassan, A., Carbognani-Arambarri, L., Nassar, N. N., Vitale, G., Lopez-Linares, F., & Pereira-Almao, P. (2015). Catalytic steam gasification of n-C 5 asphaltenes by kaolin-based catalysts in a fixed-bed reactor. App. Catal. A-Gen., 507, 149-161. DOI: 10.1016/j.apcata.2015.09.025.

Hosseinpour, N., Khodadadi, A. A., Bahramian, A., & Mortazavi, Y. (2013). Asphaltene adsorption onto acidic/ basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir, 29 (46), 14135-14146. DOI: 10.1021/la402979h.

Hosseinpour, N., Mortazavi, Y., Bahramian, A., Khodatars, L., & Khodadadi, A. A., (2014). Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology. App. Catal. A-Gen., 477: 159-171. DOI: apcata.2014.03.017.

Ju, B., Fan, T., & Ma, M. (2006). Enhanced oil recovery by flooding with hydrophilic nanoparticles. China Part., 4 (1): 41-46. DOI: 2515(07)60232-2.

Karimi, A., Fakhroueian, Z., Bahramian, A., Khiabanit, N. O., Darabad, J. B., Azin, R., & Aria, S. (2012). Wettability alteration in carbonates using zirconium oxide nanofluids: EOR implications. Energ. Fuel., 26 (2), 1028-1036. DOI: 10.1021/ef201475u.

Kazemzadeh, Y., Eshraghi, E., Kasemi, K., Sourani, S, Mehrabi, M., & Ahmadi, Y. (2015b). Behavior of asphaltene adsorption onto the metal oxide nanoparticle surface and Its effect on heavy oil recovery. Ind. Eng. Chem. Res., 54 (1), 233-239. DOI: 10.1021/ie503797g.

Kazemzadeh, Y., Malayeri, M. R., Riazi, M., & Parsaei, R. (2015a). Impact of Fe3O4 nanoparticles on asphaltene precipitation during CO 2 injection. J. Nat. Gas Sci. Eng., 22, 227-234. DOI: jngse.2014.11.033.

Leontaritis, K., Amaefule, J., & Charles, R.(1994). A systematic approach for the prevention and treatment of formation damage caused by asphaltene deposition. SPE Prod. Facil., 9 (3), 157-164.

Maqbool, T., Balgoa, A. T., & Fogler, H. S. (2009). Revisiting asphaltene precipitation from crude oils: a case of neglected kinetic effects. Energ. Fuel,. 23 (7): 3681-3686. DOI: 10.1021/ef9002236.

Marczewski, A., & Szymula, M. (2003). Adsorption of asphaltenes from toluene on quartz and silica-rich soils. Adsorption, 58(4), 70-79.

Marczewski, A. W., & Szymula, M. (2002). Adsorption of asphaltenes from toluene on mineral surface. Colloid. Surf. A, 208 (1-3), 259-266. DOI: S0927-7757(02)00152-8.

Marlow, B., Sresty, G., Hughes, R., & Mahajan, O. (1987). Colloidal stabilization of clays by asphaltenes in hydrocarbon media. Colloid. Surf., 24 (4), 283-297. DOI:

Mendoza de la Cruz, J. L., Castellanos-Ramírez, I. V., Ortiz- Tapiac, A. O., Buenrostro-González, E., Durán-Valencia, C., & López-Ramírez, S. (2009). Study of monolayer to multilayer adsorption of asphaltenes on reservoir rock minerals. Coll. Surf. A., 340(1), 149-154. DOI: 10.1016/j. colsurfa.2009.03.021

Mohammadi, M., Akbarit, M., Fakhroueian, Z., Bahramian, A., & Sharareh, A. (2011). Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids. Energ. Fuel., 25 (7), 3150-3156. DOI: 10.1021/ef2001635.

Mora, C., Franco, C. A., & Cortés, F. B. (2013). Uso de nanopartículas de sílice para la estabilización de finos en lechos empacados de arena Ottawa. Rev. Inform. Técn., 77 (1), 27. DOI:

Montoya, T., Coral, D., Franco, C. A., Nassar, N. N., & Cortés, F. B. (2014). A novel solid–liquid equilibrium model for describing the adsorption of associating asphaltene molecules onto solid surfaces based on the “Chemical Theory”. Energ. Fuel., 28 (8), 4963-4975. DOI: 10.1021/ ef501020d.

Morrow, N. R. (1990). Wettability and its effect on oil recovery. J. Petrol. Technol. , 42 (12), 1476-1484. DOI: https://doi. org/10.2118/21621-PA.

Mullins, O. C. (2010). The Modified Yen Model. Energ. Fuel., 24 (4), 2179-2207. DOI: 10.1021/ef900975e.

Mullins, O. C. (2011). The asphaltenes. Ann. Rev. Analyt. Chem., 4, 393-418. DOI: 10.1146/annurev-anchem-061010-113849.

Mullins, O.C., Sheu, E.Y., Hammami, A. & Marshall, A.G. (2007). Asphaltenes, heavy oils, and petroleomics. Springer Science & Business Media.

Nassar, N. N. (2010). Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic Studies. Energ. Fuel., 24 (8), 4116-4122. DOI: 10.1021/ef100458g.

Nassar, N. N., Betancur, S., Acevedo, S.A., Franco, C., & Cortés, F.B., (2015a). Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates. Ind. Eng. Chem. Res., 54 (33), 8201-8211. DOI: DOI: 10.1021/acs.iecr.5b02075.

Nassar, N. N., Franco, C. A., Montoya, T., Cortés, F. B., & Hassan, A., (2015b). Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of nC 7 asphaltenes. Fuel, 156: 110-120. DOI: http://dx.doi. org/10.1016/j.fuel.2015.04.031.

Nassar, N. N., Hassan, A., Carbognani, L., Lopez-Linares, F., & Pereira-Almao, P., (2012). Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel, 95, 257-262. DOI: http://dx.doi. org/10.1016/j.fuel.2011.09.022.

Nassar, N. N., Hassan, A., & Pereira-Almao, P. (2011a). Application of nanotechnology for heavy oil upgrading: Catalytic steam gasification/cracking of asphaltenes. Energ. Fuel., 25 (4), 1566-1570. DOI: 10.1021/ef2001772.

Nassar, N. N., Hassan, A., & Pereira-Almao, P. (2011b). Metal oxide nanoparticles for asphaltene adsorption and oxidation. Energ. Fuel., 25 (3), 1017-1023. DOI: 10.1021/ef101230g.

Nassar, N. N., Montoya, T., Franco, C. A., Cortés, F. B., & Pereira-Almao, P.R. (2015c). A New model for describing the adsorption of asphaltenes on porous media at a high pressure and temperature under flow conditions. Energ. Fuel., 29 (7), 4210-4221. DOI: 10.1021/acs. energyfuels.5b00693.

Oliensis, G., (1935). The Oliensis spot test -- What justification is there for its use?, Association of Asphalt Paving Technologists Proceedings.

Pedersen, K. S., Christensen, P. L., & Shaikh, J. A. 2014. Phase behavior of petroleum reservoir fluids. (2 Edition). CRC Press.

Pernyeszi, T. & Dékány, I. (2001). Sorption and elution of asphaltenes from porous silica surfaces. Colloid. Surf. A, 194 (1-3), 25-39. DOI: 7757(01)00574-X.

Pernyeszi, T., Patzko, A., Berkesi, O., & Dékány, I. (1998). Asphaltene adsorption on clays and crude oil reservoir rocks. Colloid. Surf. A, 137 (1), 373-384. DOI. https://doi. org/10.1016/S0927-7757(98)00214-3.

Polanyi, M., (1914). Adsorption from the point of view of the Third Law of Thermodynamics. Verh. Deut. Phys. Ges, 16, 1012-1016.

Riffel, D. B., Schmidt, F., Belo, F. A., Leite, A. P. F., Cortés, F, Chejne, F, & Ziegler F. (2011). Adsorption of water on grace silica gel 127B at low and high pressure. Adsorption, 17 (6), 977-984. DOI: doi:10.1007/s10450-011-9379-6.Salathiel, R. (1973). Oil recovery by surface film drainage in mixed-wettability rocks. J. Petrol. Technol. , 25(10), 1,216-1,224.

Shang, J., Flury, M., Harsh, J. B., & Zollars, R. L. (2008). Comparison of different methods to measure contact angles of soil colloids. J. Colloid Interf. Sci., 328 (2), 299-307. DOI:

Shayan, N.N. & Mirzayi, B. (2015). Adsorption and Removal of Asphaltene Using Synthesized Maghemite and Hematite Nanoparticles. Energ. Fuel., 29(3), 1397-1406.

Sing, K. S. W. 1985. Reporting physisorption data for gas/ solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure App. Chem., 57 (4), 603-619. DOI: pac198557040603.

Spiecker, P. M., Gawrys, K. L., & Kilpatrick, P.K. (2003a). Aggregation and solubility behavior of asphaltenes and their subfractions. J. Colloid. Interf. Sci., 267(1): 178-193.

Spiecker, P. M., Gawrys, K .L., Trail, C.B. & Kilpatrick, P. K. (2003b). Effects of petroleum resins on asphaltene aggregation and water-in-oil emulsion formation. Colloid. Surf. A. Physicochem. Engine. Aspects, 220 (1), 9-27. DOI:

Szymula, M., & Marczewski, A. W. 2002. Adsorption of asphaltenes from toluene on typical soils of Lublin region. Appl. Surf. Sci., 196 (1), 301-311. DOI: http://dx.doi. org/10.1016/S0169-4332(02)00068-5.

Van Oss, C. J. (2006). Interfacial forces in aqueous media. (2 Edition). Florida: CRC Taylor & Francis Group.

Wang, B . X., Zhao, Y., & Zhao, X. P. (2007). The wettability, size effect and electrorheological activity of modified titanium oxide nanoparticles. Colloid Surface A Physicochem. Engin. Aspects, 295 (1), 27-33. DOI: http://dx.doi. org/10.1016/j.colsurfa.2006.08.025.

Wu, J., Prausnitz, J. M., & Firoozabadi, A. (1998). Molecular-thermodynamic framework for asphaltene-oil equilibria. AIChE J., 44 (5), 1188-1199.

Zabala, R., Mora, E., Botero, O. F., Céspedes, C., Guarin, L., Franco, F. B., Cortes, F. B., Patiño, J. E., & Ospina, N. (2014). Nano-Technology for asphaltenes inhibition in Cupiagua South Wells, IPTC 2014: Int. Petrol. Technol. Conf.
How to Cite
Cortés, F., Montoya, T., Acevedo, S., Nassar, N. N., & Franco, C. A. (2016). Adsorption-desorption of n–c7 asphaltenes over micro- and nanoparticles of silica and its impact on wettability alteration. CT&F - Ciencia, Tecnología Y Futuro, 6(4), 89-106.


Download data is not yet available.
Scientific and Technological Research Articles

More on this topic