Rheological behavior of water-in-oil emulsions of heavy and extra-heavy live oils: experimental evaluation.

  • Wilson A. Cañas Marín Ecopetrol S.A.
  • Libia Sofía Sandoval Rodríguez Universidad Industrial de Santander.
  • Ramiro Martínez Rey Universidad Industrial de Santander.
Keywords: Live emulsions, Rheology of emulsions, Heavy live oil, Capillary viscometer, Petroleum reservoir


Stable emulsions were prepared with heavy and extra-heavy live oils by using a set-up recently built at Ecopetrol S.A. - Instituto Colombiano del Petróleo (ICP). This equipment permits to prepare water-in-oil emulsions at reservoir conditions without any change on the overall hydrocarbon composition.

The live emulsions were prepared with water contents up to 26% in volume. Then, a capillary viscometer was used to study the rheological behavior of these emulsions at different shear rates and pressures up to 24.2 MPa.  The experimental results permit to conclude that the prepared and evaluated emulsions have a Newtonian behavior for the conditions of water contents, shear rates, pressures and temperature (60°C) here studied.  For these emulsions, a logarithmic behavior of the viscosity with respect to pressure and water content was also observed.


Abivin, P., Henaut, C., Chaudemanche, C., Argillier, J. F., Chinesta, F. & Moan, M. (2009). Dispersed systems in heavy crude oil. Oil Gas Sci. Technol., 64(5), 557-570.

Albers, W. & Overbeek, J. T. G. (1960). Stability of emulsions of water in oil III. Flocculation and redispersion of water droplets covered by amphipolar monolayers. J. Colloid Sci., 15(6), 489-502.

Alboudwarej, H., Muhammad, M., Shahraki, A., Dubey, S., Vreenegoor, L. & Saleh, J. (2007). Rheology of heavy-oil emulsions. SPE Prod. Oper., 22(3), 285-293.

Al-Roomi, Y., George, R., Elgibaly, A. & Elkamel, A. (2004). Use of a novel surfactant for improving the transportability/transportation of heavy/viscous crude oils. J. Petrol. Sci. Eng., 42(2), 235-243.

Alvarado, D. & Marsden, S. S. (1979). Flow of oil-in-water emulsions through tubes and porous media. SPE J., 19(6), 369-377.

André, A. L. B. (2009). Investigation of the stability and separation of water-in-oil emulsion. Doctoral Dissertation, Department of Process Engineering. Stellenbosch University, Stellenbosch, 124pp.

Arhuoma, M., Dong, M., Yang, D. & Idem, R. (2009). Determination of water-in-oil emulsion viscosity in porous media. Ind. Eng. Chem. Res., 48(15), 7092-7102.

ASTM Standard D5307-97. Test Method for Determination of Boiling Range Distribution of Crude Petroleum by Gas Chromatography. Annual Book of Standards, ASTM International, West Conshohocken, PA, 2007.

ASTM Standard D4006-11. Test Method for Water in Crude Oil by Distillation. Annual Book of Standards, ASTM International, West Conshohocken, PA, 2012.

Azodi, M. & Nazar, A. R. S. (2013). Experimental design approach to investigate the effects of operating factors on the surface tension, viscosity, and stability of heavy crude oil-in-water emulsions. J. Disp. Sci. Technol., 34(2), 273-282.

Barrufet, M. A. & Setiadarma, A. (2003). Experimental viscosities of heavy oil mixtures up to 450 K and high pressures using a mercury capillary viscometer. J. Petrol. Sci. Eng., 40(1), 17-26.

Binks, B. P., Clint, J. H., Fletcher, P. D. I., Rippon, S., Lubetkin, S. D. & Mulqueen, P. J. (1999). Kinetics of swelling of oil-in-water emulsions stabilized by different surfactants. Langmuir, 15(13), 4495-4501.

Broughton, G. & Squires, L. (1938). The viscosity of oil-water emulsions. J. Phys. Chem., 42(2), 253-263.

Camy, J. P., Marsden, S. S., Hung-B., J. E., Arihara, N., Casse, F. J., Alvarado-Q., D. A., Mandel, L., Mobarak, S., Gonzalez-G. H. O., Mao, M. L., Samaniego-V., F., Romero-G., E., Rivera-R., J. & Marius, C. G. (1975). The rheology of crude oil dispersions. SPE Oilfield Chemistry Symposium. Texas, USA. SPE-5299-MS.

David, A. & Marsden Jr, S. S. (1969). The rheology of foam. Fall Meeting of the Society of Petroleum Engineers of AIME. Colorado, USA. SPE-2544-MS.

Forgiarini, A., Esquena, J., González, C. & Solans, C. (2000). Studies of the relation between phase behavior and emulsification methods with nanoemulsion formation. Progr. Colloid Polym. Sci., 115: 36-39.

Gafonova, O. V. & Yarranton, H. W. (2001). The stabilization of water-in-hydrocarbon emulsions by asphaltenes and resins. J. Colloid Int. Sci., 241(2), 469-478.

GPA 2286-95. Tentative Method of Extended Analysis for Natural Gas and Similar Gaseous Mixtures by Temperature Programmed Gas Chromatography. Gas Processors Association. 1995.

Haney, M. A. (1985). The differential viscometer. II. On-line viscosity detector for size-exclusion chromatography. J. Appl. Polym. Sci., 30(7), 3037-3049.

IP Test Methods 143. Determination of asphaltenes (heptane insolubles) in crude petroleum and petroleum products. 2004.

Johnsen, E. E. & Rønningsen, H. P. (2003). Viscosity of 'live' water-in-crude-oil emulsions: experimental work and validation of correlations. J. Petrol. Sci. Eng., 38 (1-2), 23-36.

Katz, D. L. & Firoozabadi, A. (1978). Predicting phase behavior of condensate/crude-oil systems using methane interaction coefficients. J. Petrol. Technol., 30(11), 1649-1655.

Kobayashi, H., Yoshida, K. & Kurano, Y. (1991). A capillary viscometer with a bellows. Jpn. J. Appl. Phys., 30(6), 1331-1332.

Kokal, S. & Álvarez, C. (2003). Reducing pressure drop in offshore pipelines by controlling the viscosities of pressurized emulsions. Middle East Oil Show. Bahrain. SPE-81511-MS.

Langevin, D., Poteau, S., Hénaut, I. & Argillier, J. F. (2004). Crude oil emulsion properties and their application to heavy oil transportation. Oil Gas Sci. Technol., 59(5), 511-521.

Lethuaut, L., Métro, F. & Genot, C. (2002). Effect of droplet size on lipid oxidation rates of oil-in-water emulsions stabilized by protein. JAOCS, 79(5), 425-430.

Li, M., Xu, M., Ma, Y., Wu, Z. & Christy, A. A. (2002). Interfacial film properties of asphaltenes and resins. Fuel, 81(14), 1847-1853.

Liauh, W. W. & Liu, T. W. (1984). A capillary viscometer for the study of EOR polymers. SPE Enhanced Oil Recovery Symposium. Tulsa. SPE-12649-MS.

Malkin, A. Y., Masalova, I., Slatter, P. & Wilson, K. (2004). Effect of droplet size on the rheological properties of highly-concentrated w/o emulsions. Rheol. Acta, 43(6), 584-591.

Martín-Alfonso, M. J., Martínez-Boza, F. J., Navarro, F. J., Fernández, M. & Gallegos, C. (2007). Pressure- temperature-viscosity relationship for heavy petroleum fractions. Fuel, 86(1-2), 227-233.

Mason, T. G., Bibette, J. & Weitz, D. A. (1996). Yielding and flow of monodisperse emulsions. J. Colloid Int. Sci., 179(2), 439-448.

Memon, A., Gao, J., Taylor, S., Engel, T. & Jia, N. (2010). A systematic workflow process for heavy oil characterization: Experimental techniques and challenges. Canadian Unconventional Resources and International Petroleum Conference. Calgary. SPE-137006-MS

Mooney, M. (1951). The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci., 6(2), 162-170.

Moradi, M., Alvarado, V. & Huzurbazar, S. (2010). Effect of salinity on water-in-crude oil emulsion: evaluation through drop-size distribution proxy. Energy Fuels, 25(1), 260-268.

Muller, R., Lessnig, W., Platz, S. & Koepke, G. (1966). U.S. Patent No. 3,283,565A. Industrial capillary viscometer. Washington.

Munoz, J. C. & Yeow, Y. L. (1996). Applications of maximum entropy method in capillary viscometry. Rheol. Acta, 35(1), 76-82.

Nagarajan, N. R., Honarpour, M. M. & Sampath, K. (2007). Reservoir-fluid sampling and characterization key to efficient reservoir management. J. Petrol. Technol., 59(8), 80-91.

Omar, A. E., Desouky, S. M. & Karama, B. (1991). Rheological characteristics of Saudi crude oil emulsions. J. Petrol. Sci. Eng., 6(2), 149-160.

Pal, R. (2000). Shear viscosity behavior of emulsions of two immiscible liquids. J. Colloid Int. Sci., 225(2), 359-366.

Pal, R. & Rhodes, E. (1985). A novel viscosity correlation for non-Newtonian concentrated emulsions. J. Colloid Int. Sci., 107(2), 301-307.

Pal, R. & Rhodes, E. (1989). Viscosity∕concentration relationships for emulsions. J. Rheol., 33: 1021-1045.

Pays, K., Giermanska-Kahn, J., Pouligny, B., Bibette, J. & Leal-Calderon, F. (2002). Double emulsions: how does release occur?. J. Control. Release, 79(1-3), 193-205.

Plasencia, J., Pettersen, B. & Nydal, O. J. (2013). Pipe flow of water-in-crude oil emulsions: Effective viscosity, inversion point and droplet size distribution. J. Petrol. Sci. Eng., 101: 35-43.

Princen, H. M., Aronson, M. P. & Moser, J. C. (1980). Highly concentrated emulsions. II. Real systems. The effect of film thickness and contact angle on the volume fraction in creamed emulsions. J. Colloid Int. Sci., 75(1), 246-270.

Rᴓnningsen, H. (1995). Correlations for predicting viscosity of W/O-emulsions based on North Sea crude oils. SPE International Symposium on Oilfield Chemistry. Texas, SPE-28968-MS.

Steinborn, R. & Flock, D. (1983). The rheology of heavy crude oils and their emulsions. J. Can. Pet. Technol., 22(5), 38-52.

Thompson, M. J., Pearson, J. R. A. & Mackley, M. R. (2001). The effect of droplet extension on the rheology of emulsions of water in alkyd resin. J. Rheol., 45(6), 1341-1358.

Webster, J. G. & Eren, H. (2014). Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal and Radiation Measurement. Boca Raton: CRC press, Taylor & Francis Group.

Wenzel, H. G., Stelson, T. E. & Brungraber, R. J. (1967). Flow of high expansion foam in pipes. J. Eng. Mech. Proc. of ASCE, 6: 153-165.

Wyslouzil, B. E., Kessick, M. A. & Masliyah, J. H. (1987). Pipeline flow behaviour of heavy crude oil emulsions. CJChE, 65(3), 353-360.
How to Cite
Cañas Marín, W. A., Sandoval Rodríguez, L. S., & Martínez Rey, R. (2014). Rheological behavior of water-in-oil emulsions of heavy and extra-heavy live oils: experimental evaluation. CT&F - Ciencia, Tecnología Y Futuro, 5(4), 5-22. https://doi.org/10.29047/01225383.37


Download data is not yet available.
Scientific and Technological Research Articles