Review of studies on asphaltene - wax interaction and the effect thereof on crystallization

  • Emiliano Ariza León Universidad Industrial de Santander.
  • Daniel Ricardo Molina Velasco Universidad Industrial de Santander.
  • Arlex Chaves Guerrero Universidad Industrial de Santander.
Keywords: Waxy crude oils, Asphaltene, Waxes, Crystallization, X-ray diffraction, Pour point, Rheological properties

Abstract

This paper reviews the impact of asphaltenes on wax crystallization and on the properties of crude oils, and the consequences thereof on the flow assurance of waxy crude oil.  It initially includes studies of the crystallization of both pure n-alkanes as well as the mixtures thereof, because they have led to an understanding of how their precipitation occurs along with their transitions of crystalline phases, particularly, by studies of X-ray diffraction (XRD).  This is followed by the studies and results of crystallization in crude oils and/or the fractions thereof and how their properties are affected in the presence of asphaltenes.

The results on the influence of asphaltenes are inconclusive and sometimes contradictory: some confirm that their presence decreases pour point, others affirm that it increases it and yet others say there is no effect. Similar results have been reported for properties such as crystallization point, phase transition and rheological properties.  The influence of the chemical structure of asphaltenes on the change in crude oil properties has not been generalized either. It has been inferred that is possibly due to the interaction between aliphatic chains of asphaltenes and waxes, and it has been established that there is synergy in coprecipitation due to evidence in the analysis of organic deposits.

References

Aiyejina, A., Chakrabarti, D., Pilgrim, A. & Sastry, M. (2011). Wax formation in oil pipelines: A critical review. Int. J. Multiphase Flow, 37(7), 671-694.
https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.007

Alcázar, L. & Buenrostro, E. (2011). Characterization of the wax precipitation in Mexican crude oils. Fuel Process. Technol., 92(12), 2366-2374.
https://doi.org/10.1016/j.fuproc.2011.08.012

Alcázar, L., García, L. & Buenrostro, E. (2012). Effect of asphaltenes on equilibrium and rheological properties of waxy model systems. Fuel, 93: 200-212.
https://doi.org/10.1016/j.fuel.2011.10.038

Aske, N. (2002). Characterization of crude oil components, asphaltene aggregation and emulsion stability by means of near infrared spectroscopy and multivariate analysis. Ph. D. thesis, Department of Chemical Engineering, Norwegian University of Science and Technology, Norway, 51pp.

Babadagli, T. (2007). Development of mature field - A review. J. Petrol. Sci. Eng., 57(3-4), 221-246.
https://doi.org/10.1016/j.petrol.2006.10.006

Ball, R. & Jones, J. (2009). Thermodynamics of the deposition of complex waxes and asphaltenes in crude oil. Open Thermodyn. J., 3: 34-37.
https://doi.org/10.2174/1874396X00903010034

Briard, A., Bouroukba, M., Petitjean, D., Hubert, N., Moise, J. & Dirand, M. (2005). Thermodynamic and structural analysesW of the solid phases in multi-alkane mixtures similar to petroleum cuts at ambient temperature. Fuel, 84(9), 1066-1073.
https://doi.org/10.1016/j.fuel.2005.01.009

Briard, A., Bouroukba, M., Petitjean, D., Hubert, N., Moise, J. & Dirand, M. (2006). Thermodynamic and structural analyses and mechanisms of the crystallisation of multialkane model mixtures similar to petroleum cuts. Fuel, 85(5-6), 764-777.
https://doi.org/10.1016/j.fuel.2005.07.020

Danesh, A. (2003). PVT and phase behaviour of petroleum reservoir fluids. Netherlands: Elsevier.

Da Silva, J. & Coutinho, J. (2004). Dynamic rheological analysis of the gelation behaviour of waxy crude oils. Rheol. Acta, 43(5), 433-441.
https://doi.org/10.1007/s00397-004-0367-6

Dimitriou, C. (2013). The rheological complexity of waxy crude oils: Yielding, thixotropy and shear heterogeneities. Ph. D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, USA, 320pp.

Dirand, M., Chevallier, V., Bouroukba, M., Petitjean, D., Behar E. & Ruffier-Meray, V. (2002). Normal alkanes, multialkane synthethic model mixtures, and real petroleum waxes: Crystallographic structures, thermodynamic properties, and crystallization. J. Chem. Eng. Data, 47(2), 115-143.
https://doi.org/10.1021/je0100084

Espeau, P. & Céolin, R. (2008). Polymorphism of evennumbered carbon atom n-alkanes revisited through topological P-T diagrams. J. Phys. Chem. B, 112(7), 2063-2069.
https://doi.org/10.1021/jp0737348

Fang, L., Zhang, X., Ma, J. & Zhang, B. (2012). Investigation into a pour point depressant for Shengli crude oil. Ind. Eng. Chem. Res., 51(36), 11605-11612.
https://doi.org/10.1021/ie301018r

Fussell, L. (1979). A technique for calculating multi-phase equilibria. SPE J., 19(4), 203-208.
https://doi.org/10.2118/6722-PA

Ganeeva, Y., Foss, T., Khalikova, D., Yusupova, T. & Romanov, G. (2008). Calorimetric study of the crystalline phase of solid petroleum hydrocarbons and asphaltene-resin-wax deposits. Petrol. Chem., 48(6), 428-433.
https://doi.org/10.1134/S0965544108060042

Ganeeva, Y., Yusupova, T., Romanov, G. & Bashkitseva, N. (2014). Phase composition of asphaltenes. J. Therm. Anal. Calorim, 115(2), 1593-1600.
https://doi.org/10.1007/s10973-013-3442-3

García, M. & Carbognani, L. (2001). Asphaltene-paraffin structural interactions. Effect on crude oil stability. Energy & Fuels, 15(5), 1021-1027.
https://doi.org/10.1021/ef0100303

Hammami, A. & Ratulowski, J. (2007). Precipitation and deposition of asphaltenes in production systems: A flow assurance overview. In: Mullins, O., Sheu, E., Hammami, A. & Marshall, A. Asphaltenes, heavy oils and petroleomics, New York: Springer, 617-660.
https://doi.org/10.1007/0-387-68903-6_23

Han, S., Huang, Z., Senra, M., Hoffmann, R. & Fogler, H. S. (2010). Method to determine the wax solubility curve in crude oil from centrifugation and high temperature gas chromatography measurements. Energy & Fuels, 24(3), 1753-1761.
https://doi.org/10.1021/ef901195w

Hirschberg, A., deJong, L., Schipper, B. & Meijer, J. (1984). Influence of temperature and pressure on asphaltene flocculation. SPE J., 24(3), 283-293.
https://doi.org/10.2118/11202-PA

Huang, Z., Lee, H., Senra, M. & Fogler, H. (2011). A fundamental model of wax deposition in subsea oil pipelines. AIChE J., 57(11), 2955-2964.
https://doi.org/10.1002/aic.12517

Irmann. T. (2011). Flow assurance - A system perspective. [Website]. [Consulted: December 2013]. Available at:

Kriz, P. & Andersen, S. (2005). Effect of asphaltenes on crude oil wax crystallization. Energy & Fuels, 19(3), 948-953.
https://doi.org/10.1021/ef049819e

Kutcherov, V. & Chernoutsan, A. (2006). Crystallization and glass transition in crude oils and their fractions at high pressure. Int. J. Thermophys., 27(2), 474-485.
https://doi.org/10.1007/s10765-005-0005-2

Kuwabara, K. & Horii, F. (1999). Solid-state 13C NMR analyses of the orthorhombic-to-hexagonal phase transition for constrained ultradrawn polyethylene fibers. Macromolecules, 32(17), 5600-5605.
https://doi.org/10.1021/ma990701k

Lei, Y., Han, S., Zhang, J., Bao, Y., Yao, Z. & Xu, Y. (2014). Study on the effect of dispersed and aggregated asphaltene on wax crystallization, gelation, and flow behavior of crude oil. Energy & Fuels, 28(4), 2314-2321.
https://doi.org/10.1021/ef4022619

Leontaritis, K. & Mansoori, G. (1987). Asphaltene flocculation during oil production and processing: A thermodynamic colloidal model. SPE International Symposium on Oilfield Chemistry, San Antonio, USA. SPE 16258.
https://doi.org/10.2118/16258-MS

Lira-Galeana, C. & Hammami, A. (2000). Wax precipitation from petroleum fluids: A review. In: Yen, T. & Chilingarian, G. Asphaltenes and asphalts, 2. Amsterdam: Elsevier Science. 40: B, 557-608.
https://doi.org/10.1016/S0376-7361(09)70292-4

Mahmoud, R., Gierycz, P., Solimando, R. & Rogalski, M. (2005). Calorimetric probing of n-alkane-petroleum asphaltene interactions. Energy & Fuels, 19(6), 2474-2479.
https://doi.org/10.1021/ef050161u

Mansoori, G. (1997). Modeling of asphaltene and other heavy organic depositions. J. Petrol. Sci. Eng., 17(1-2), 101-111.
https://doi.org/10.1016/S0920-4105(96)00059-9

Mansoori, G. (2009). A unified perspective on the phase behaviour of petroleum fluids. Int. J. Oil, Gas and Coal Technology, 2(2), 141-167.
https://doi.org/10.1504/IJOGCT.2009.024884

Marchesini, F., Alicke, A., de Souza, P. & Ziglio, C. (2012). Rheological characterization of waxy crude oils: Sample preparation. Energy & Fuels, 26(5), 2566-2577.
https://doi.org/10.1021/ef201335c

Mullin, J. (2001). Crystallization. Fourth edition. Oxford: Butterworth Heinemann.
https://doi.org/10.1016/B978-075064833-2/50000-0

Murgich, J. & Strausz, O. (2001). Molecular mechanics of aggregates of asphaltenes and resins of the athabasca oil. Petrol. Sci. Technol., 19(1-2), 231-243.
https://doi.org/10.1081/LFT-100001237

Oh, K. & Deo, M. (2009). Characteristics of wax gel formation in the presence of asphaltenes. Energy & Fuels, 23(3), 1289-1293.
https://doi.org/10.1021/ef8006307

Ordóñez, A., Guarín, F., Parra, J., Vargas, J., Suárez, H., Castillo, G. & Castro, J. (2003). Diagnósticos y estrategias de recobro. Informe Final Campo Colorado. El Centro. Ecopetrol S.A.

Pfeiffer, J. & Saal, R. (1940). Asphaltene bitumen as colloid system. J. Phys. Chem., 44(22), 139-149.
https://doi.org/10.1021/j150398a001

Rajabalee, F., Métivaud, V., Mondieig, D., Haget, Y. & Cuevas-Diarte, M. (1999). New insights on the crystalline forms in binary systems of n-alkanes: Characterization of the solid ordered phases in the phase diagram tricosane + pentacosane. J. Mater. Res., 14(6), 2644-2654.
https://doi.org/10.1557/JMR.1999.0354

Sadeghazad, A., Christiansen, R., Sobhi, G. & Edalat, M. (2000). The prediction of cloud point temperature: In wax deposition. SPE Asia Pacific Oil & Gas Conference and Exhibition, Brisbane, Australia. SPE-64519.
https://doi.org/10.2118/64519-MS

Satter, A., Iqbal, G. & Buchwalter, J. (2007). Practical enhanced reservoir engineering: Assisted with simulation software. Tulsa: PennWell.

Sirota, E., King, H., Shao, H. & Singer, D. (1995). Rotator phases in mixtures of n-alkanes. J. Phys. Chem., 99(2), 798-804.
https://doi.org/10.1021/j100002a050

Sotomayor, J. (2000). Las fases sólidas orgánicas en la explotación de petróleo y gas - una contribución al análisis de sus causas. GPA Estudios y Servicios Petroleros SRL. Nota técnica No 26. [Website]. [Consulted: December 2013]. Available at:

Speight, J. (2007). The chemistry and technology of petroleum. Fourth edition. New York: CRC press.

Stachowiak, C., Viguié, J., Grolier, J. & Rogalski, M. (2005). Effect of n-alkanes on asphaltene structuring in petroleum oils. Langmuir, 21(11), 4824-4829.
https://doi.org/10.1021/la047126k

Tinsley, J., Jahnke, J., Dettman, H. & Prud'home, R. (2009a). Waxy gels with asphaltenes 1: Characterization of precipitation, gelation, yield stress, and morphology. Energy & Fuels, 23(4), 2056-2064.
https://doi.org/10.1021/ef800636f

Tinsley, J., Jahnke, J., Adamson, D., Guo, X., Amin, D., Kriegel, R., Saini, R., Dettman, H. & Prud'home, R. (2009b). Waxy gels with asphaltenes 2: Use of wax control polymers. Energy & Fuels, 23(4), 2065-2074.
https://doi.org/10.1021/ef800651d

Vargas, C. (2009). Nuevos aportes a la estimación del potencial de hidrocarburos en Colombia. Rev. Acad. Colomb. Cienc., 33(126), 17-43.

Venkatesan, R., Östlund, J., Chawla, H., Wattana, P., Nydén, M. & Fogler, H. (2003). The effect of asphaltenes on the gelation of waxy oils. Energy & Fuels, 17(6), 1630-1640.
https://doi.org/10.1021/ef034013k

Wang, S., Tozaki, K., Hayashi, H., Inaba, H. & Yamamoto, H. (2006). Observation of multiple phase transitions in some even n-alkanes using a high resolution and super-sensitive DSC. Thermochimica Acta, 448(2), 73-81.
https://doi.org/10.1016/j.tca.2006.06.022

Wardhaugh, L., Boger, D. & Tonner, S. (1988). Rheology of waxy crude oils. International Meeting on Petroleum Engineering, Tianjin, China. SPE 17625.
https://doi.org/10.2118/17625-MS

Wentzel, N. & Milner, S. (2010). Crystal and rotator phases of n-alkanes: Amolecular dynamics study. J. Chem. Phys., 132(4), 1-10.
https://doi.org/10.1063/1.3276458

Yang, Z. & Kilpatrick, P. (2005). Asphaltenes and waxes do not interact synergistically and coprecipitate in solid organic deposits. Energy & Fuels, 19(4), 1360-1375.
https://doi.org/10.1021/ef050022c

Yi, S. & Zhang, J. (2011). Relationship between waxy crude oil composition and change in the morphology and structure of wax crystals induced by pour-point-depressant beneficiation. Energy & Fuels, 25(4), 1686-1696.
https://doi.org/10.1021/ef200059p

Zhao, Y., Kumar, L., Paso, K., Safieva, J., Sariman, M. Z. & Sjöblom, J. (2012). Gelation behavior of model wax-oil and crude oil systems and yield stress model development. Energy & Fuels, 26(10), 6323-6331.
https://doi.org/10.1021/ef3012454

Zhu, T., Walker, J. & Liang, J. (2008). Evaluation of wax deposition and its control during production of Alaska north slope oils. Final report. Department of Energy National Energy Technology Laboratory. USA.
How to Cite
Ariza León, E., Molina Velasco, D. R., & Chaves Guerrero, A. (2014). Review of studies on asphaltene - wax interaction and the effect thereof on crystallization. CT&F - Ciencia, Tecnología Y Futuro, 5(5), 39–53. https://doi.org/10.29047/01225383.32

Downloads

Download data is not yet available.
Published
2014-12-15
Section
Scientific and Technological Research Articles

Altmetric

QR Code