Characterization of vacuum gas oils using FT-ICR MS

  • Andrea Gómez Escudero Ecopetrol S.A.
  • Fernando Andrés Rojas Ruíz TIP.
  • Jorge Armando Orrego Ruíz Ecopetrol S.A.
Keywords: Electrospray ionization, Atmospheric pressure photoionization, Fourier transform ion cyclotron resonance mass spectrometry, Medium vacuum gas oils

Abstract

The molecular composition of five Medium Vacuum Gas Oils (MVGOs) was studied using 15T Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) coupled with Electrospray Ionization (ESI) and atmospheric pressure photoionization (APPI). Class and Double Bond Equivalence (DBE) distribution of the MVGOs were compared; non-basic, basic nitrogen and oxygen compounds were detected using ESI negative and positive mode while aromatic hydrocarbons and sulfur species were visible via APPI. Compositional distributions revealed definitive heteroatom class and type trends among the MVGOs, and provide evidence of the relationship between chemical composition of gas oils (in terms of aromaticity, maturity and biodegradation) and some of its macroscopic properties such as API gravity. Furthermore, the observed class relative abundances matched well with the sulfur and nitrogen content determined for the MVGO’s by conventional methodologies. These preliminary approaches are here reported for Colombian gas oils for the first time, and afford as insight that it is possible to obtain semi quantitative information from FT-ICR MS experiments.

References

ASTM D287-12b. Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). Annual Book of ASTM Standards, Vol. 05.02, ASTM International, West Conshohocken, PA, 2012.

ASTM D5236-13. Standard Test Method for Distillation of Heavy Hydrocarbon Mixtures (Vacuum Potstill Method). Annual Book of ASTM Standards, Vol. 05.02, ASTM International, West Conshohocken, PA, 2013.

ASTM D5453-12. Standard Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence. Annual Book of ASTM Standards, Vol. 05.02, ASTM International, West Conshohocken, PA, 2012.

ASTM D5762-12. Standard Test Method for Nitrogen in Petroleum and Petroleum Products by Boat-Inlet Chemiluminescence. Annual Book of ASTM Standards, Vol. 05.02, ASTM International, West Conshohocken, PA, 2012.

ASTM UOP269-10. Nitrogen Bases in Hydrocarbons by Potentiometric Titration, ASTM International, West Conshohocken, PA, 2010.

Bauserman, J. W., Nguyen, K. M. & Mushrush, G. W. (2004). Nitrogen compound determination and distribution in three source fuels by GC/MS. Petrol. Sci. Technol., 22(11- 12), 1491-1505.
https://doi.org/10.1081/LFT-200027799

Brown, T. L. & Rice, J. A. (2000). Effect of experimental parameters on the ESI FT-ICR mass spectrum of fulvic acid. Anal. Chem., 72(2), 384-390.
https://doi.org/10.1021/ac9902087

Comisarow, M. B. & Marshall, A. G. (1974). Fourier transform ion cyclotron resonance mass spectroscopy. Chem. Phys. Lett., 25(2), 282-283.
https://doi.org/10.1016/0009-2614(74)89137-2

Cunico, R. L., Sheu, E. Y. & Mullins, O. C. (2004). Molecular weight measurements of UG8 asphaltene using APCI mass spectrometry. Petrol. Sci. Technol., 22(7-8), 787-798.
https://doi.org/10.1081/LFT-120038719

D'Alessio, A., Vergamini, P. & Benedetti, E. (2000). FT-IR investigation of the structural changes of Sulcis and South Africa coals under progressive heating in a vacuum. Fuel, 79(10), 1215-1220.
https://doi.org/10.1016/S0016-2361(99)00257-4

Damsté, J. S. S., White, C. M., Green, J. B. & de Leeuw, J. W. (1999). Organosulfur compounds in sulfur-rich Rasa coal. Energy Fuels, 13(3), 728-738.
https://doi.org/10.1021/ef980236c

Dutriez, T., Courtiade, M., Thiébaut, D., Dulot, H. & Hennion, M. C. (2010). Improved hydrocarbons analysis of heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography. Fuel, 89(9), 2338- 2345.
https://doi.org/10.1016/j.fuel.2009.11.041

Dutriez, T., Thiébaut, D., Courtiade, M., Dulot, H., Bertoncini, F. & Hennion, M. C. (2013). Application to SFC-GC × GC to heavy petroleum fractions analysis. Fuel, 104: 583-592.
https://doi.org/10.1016/j.fuel.2012.04.048

Hughey, C. A., Galasso, S. A. & Zumberge, J. E. (2007). Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 86(5-6), 758-768.
https://doi.org/10.1016/j.fuel.2006.08.029

Hughey, C. A., Rodgers, R. P., Marshall, A. G., Qian, K. & Robbins, W. K. (2002). Identification of acidic NSO compounds in crude oils of different geochemical origins by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem., 33(7), 743-759.
https://doi.org/10.1016/S0146-6380(02)00038-4

Hughey, C. A., Rodgers, R. P., Marshall, A. G., Walters, C. C., Qian, K. & Mankiewicz, P. (2004). Acidic and neutral polar NSO compounds in Smackover oils of different thermal maturity revealed by electrospray high field Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem., 35(7), 863-880.
https://doi.org/10.1016/j.orggeochem.2004.02.008

Kelemen, S. R., Gorbaty, M. L., Kwiatek, P. J., Fletcher, T. H., Watt, M., Solum, M. S. & Pugmire, R. J. (1998). Nitrogen transformations in coal during pyrolysis. Energy Fuels, 12(1), 159-173.
https://doi.org/10.1021/ef9701246

Kim, Y. H. & Kim, S. (2010). Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene. J. Am. Soc. Mass Spectrom., 21(3), 386-392.
https://doi.org/10.1016/j.jasms.2009.11.001

Kim, S., Stanford, L. A., Rodgers, R. P., Marshall, A. G., Walters, C. C., Qian, K., Wenger, L. M. & Mankiewicz, P. (2005). Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem., 36(8), 1117-1134.
https://doi.org/10.1016/j.orggeochem.2005.03.010

Klein, G. C., Rodgers, R. P. & Marshall, A. G. (2006). Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry. Fuel, 85(14-15), 2071-2080.
https://doi.org/10.1016/j.fuel.2006.04.004

Mapolelo, M. M., Rodgers, R. P., Blakney, G. T., Yen, A. T., Asomaning, S. & Marshall, A. G. (2011). Characterization of naphthenic acids in crude oils and naphthenates by electrospray ionization FT-ICR mass spectrometry. Int. J. Mass Spectrom., 300(2-3), 149-157.
https://doi.org/10.1016/j.ijms.2010.06.005

Marshall, A. G. & Rodgers, R. P. (2004). Petroleomics: The next grand challenge for chemical analysis. Acc. Chem. Res., 37(1), 53-59.
https://doi.org/10.1021/ar020177t

Marshall, A. G. & Rodgers, R. P. (2008). Petroleomics: Chemistry of the underworld. Proc. Natl. Acad. Sci. USA, 105(47), 18090-18095.
https://doi.org/10.1073/pnas.0805069105

Mochida, I. & Choi, K. (2004). An overview of hydrodesul- furization and hydronitrogenation. J. Jpn. Petrol. Inst., 47: 145-163.
https://doi.org/10.1627/jpi.47.145

Muller, H., Adam, F. M., Panda, S. K., Al-Jawad, H. H. & Al-Hajji, A. A. (2012). Evaluation of quantitative sulfur speciation in gas oils by Fourier transform ion cyclotron resonance mass spectrometry: Validation by comprehensive two-dimensional gas chromatography. J. Am. Soc. Mass Spectrom., 23(5), 806-815.
https://doi.org/10.1007/s13361-011-0321-7

Muller, H., Hajji, A. A. & Koseoglu, O. R. (2007). Chemindex 2007 Proceedings - Extended Abstracts. Manama, Bahrain.

Oldenburg, T. B. P., Brown, M., Bennett, B. & Larter, S. R. (2014). The impact of thermal maturity on the composition of crude oils, assessed using ultra-high resolution mass spectrometry. Organic Geochem., 75: 151-168.
https://doi.org/10.1016/j.orggeochem.2014.07.002

Oro, N. E. & Lucy, C. A. (2013). Analysis of the nitrogen content of distillate cut gas oils and treated heavy gas oils using normal phase HPLC, fraction collection and petroleomic FT-ICR MS data. Energy Fuels, 27(1), 35-45.
https://doi.org/10.1021/ef301116j

Pan, Y., Liao, Y., Shi, Q. & Hsu, C. S. (2013). Acidic and neutral polar NSO compounds in heavily biodegraded oils characterized by negative-ion ESI FT-ICR MS. Energy Fuels, 27(6), 2960-2973.
https://doi.org/10.1021/ef400191h

Pruski, M., De la Rosa, L. & Gerstein, B. C. (1990). Effect of sample spinning on detection of carbon-13 NMR in coals. Energy Fuels, 4(2), 160-165.
https://doi.org/10.1021/ef00020a006

Qian, K., Edwards, K. E., Dechert, G. J., Jaffe, S. B., Green, L. A. & Olmstead, W.N. (2008). Measurement of Total Acid Number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry. Anal. Chem., 80(3), 849-855.
https://doi.org/10.1021/ac701868v

Radke, M. & Willsch, H. (1991). Occurence and thermal evolution of methylated benzo- and dibenzothiphenes in petroleum source rocks of western Germany. In: Manning, D. (ed), Organic geochemistry. Advances and applications in energy and the natural environment. Manchester: Manchester University Press, 480-484.

Reddy, C. M., Nelson, R. K., Sylva, S. P., Xu, L., Peacock, Mullins, O. C. (2007). Identification and quantification of alkene-based drilling fluids in crude oils by comprehensive two-dimensional gas chromatography with flame ionization detection. J. Chromatogr. A, 1148(1), 100-107.
https://doi.org/10.1016/j.chroma.2007.03.001

Shi, Q., Xu, C., Zhao, S., Chung, K. H., Zhang, Y. & Gao, W. (2010). Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels, 24(1), 563-569.
https://doi.org/10.1021/ef9008983

Ueda, K., Matsui, H., Malhotora, R. & Nomura, M. (1991). Chemical characterization of heavy oils using HPLC/ FI-MS analysis of a petroleum vacuum residue. J. Jpn. Petrol. Inst., 34(1), 62-70.
https://doi.org/10.1627/jpi1958.34.62

Vaz, B. G., Silva, R. C., Klitzke, C. F., Simas, R. C., Lopes, H. D., Pereira, R. C. L., Garcia, D. F., Eberlin, M. N. & Azevedo, D. A. (2013). Assessing biodegradation in the Llanos Orientales crude oils by electrospray ionization ultrahigh resolution and accuracy Fourier transform mass spectrometry and chemometric analysis. Energy Fuels, 27(3), 1277-1284.
https://doi.org/10.1021/ef301766r

Zhan, D. & Fenn, J. B. (2000). Electrospray mass spectrometry of fossil fuels. Int. J. Mass Spectrom., 194(2-3), 197-208.
https://doi.org/10.1016/S1387-3806(99)00186-4
How to Cite
Gómez Escudero, A., Rojas Ruíz, F. A., & Orrego Ruíz, J. A. (2015). Characterization of vacuum gas oils using FT-ICR MS. CT&F - Ciencia, Tecnología Y Futuro, 6(1), 69-80. https://doi.org/10.29047/01225383.27

Downloads

Download data is not yet available.
Published
2015-06-15
Section
Scientific and Technological Research Articles

More on this topic