Unstructured kinetic model for batch fermentation of USP glycerol for lactic acid production

  • Luis Javier López Giraldo Universidad Industrial de Santander.
  • Jimy Alexander Gamboa Rueda Universidad Industrial de Santander.
  • Víctor Alexis Lizcano González Universidad Industrial de Santander.
  • Mario Andrés Ordoñez Supelano Universidad Industrial de Santander.
  • José Andrés Pérez Mendoza Universidad del Atlántico.
  • Carolina Guzmán Luna Universidad Industrial de Santander.
Keywords: Inhibition, Crude glycerol, Kinetics, Lactobacillus rhamnosus, Fermentation, Lactic acid

Abstract

This study show the capability of Lactobacillus rhamnosus ATCC 7469 to produce lactic acid using crude glycerol from biodiesel production as carbon source; in addition, a kinetic model that describes the behaviour of the fermentation process using USP glycerol as substrate was proposed and developed.

The strain was adapted to the new carbon source by doing successive cultures, the substrate conversion was up to 94.5% after 24 hours of fermentation using crude glycerol as under initial conditions of substrate concentration (crude glycerol) and pH of 8 g/L and 6.5, respectively. Then, the influence of initial pH (pHo) and concentration of substrate (So) were evaluated by fermentation tests of USP glycerol. The optimal value of volumetric lactic acid productivity (Qv) achieved from this study was 0.087 g.L-1.h-1 for initial pHo = 6.5 and initial substrate concentration So = 6 g/L. Lastly, the kinetics parameters of an unstructured and not segregated model (Aiba type equation for growth rate expression), were adjusted with an average fit degree of 88% for all the initial conditions, using USP glycerol. In addition, the kinetic parameters are laid out as function of initial pH and substrate concentration.

References

Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J. & Jirstrand, M. (2014). Kinetic models in industrial biotechnology - Improving cell factory performance. Metab. Eng., 24: 38-60.
https://doi.org/10.1016/j.ymben.2014.03.007

Alvarez, M., Medina, R., Pasteris, S., Strasser de Saad, A. & Sesma, F. (2004). Glycerol metabolism of Lactobacillus rhamnosus ATCC 7469: Cloning and expression of two glycerol kinase genes. J. Mol. Microbiol. Biotechnol., 7(4),170-181.
https://doi.org/10.1159/000079826

Banga, J. R., Versyck, K. J. & Van Impe, J. F. (2000). Numerical strategies for optimal experimental design for parameter identification of non-linear dynamic (Bio-) chemical processes. Comput. Aided Chem. Eng., 8: 37-42.
https://doi.org/10.1016/S1570-7946(00)80008-5

Berry, A., Franco, C., Zhang, W. & Middelberg, A. (1999). Growth and lactic acid production in batch culture of Lactobacillus rhamnosus in a defined medium. Biotechnol. Letters, 21(2), 163-167.
https://doi.org/10.1023/A:1005483609065

British Petroleum. (2012). BP statistical review of world energy, London, England. 45pp.

Castellanos, L. J., Matallana, L. G. & López. L. J. (2014). Análisis de estabilidad de un sistema de fermentación acetona-butanol-etanol (ABE) a partir de glucosa empleando Clostridium acetobutylicum ATCC 824. Rev. Mutis, 4(1), 15-23.
https://doi.org/10.21789/22561498.906

Cerrate, S., Yan, F., Wang, Z., Coto, C., Sacakli, P. & Waldroup, P. W. (2006). Evaluation of glycerine from biodiesel production as a feed ingredient for broilers. Int. J. Poult. Sci., 5(11), 1001-1007.
https://doi.org/10.3923/ijps.2006.1001.1007

Choubisa, B., Patel, H., Patel, M. & Dholakiya, B. (2012). Microbial production of lactic acid by using crude glycerol from biodiesel. J. Microbiol. Biotech. Res., 2(1), 90-93.

Dobson, R., Gray, V. & Rumbold, K. (2012). Microbial utilization of crude glycerol for the production of value- added products. J. Ind Microbiol. Biotechnol., 39(2), 217-226.
https://doi.org/10.1007/s10295-011-1038-0

Doran, P. M. (1995). Bioprocess engineering principles. 1 ed. England: Elsevier Science and Technologic Books.

Federación Nacional de Biocombustibles de Colombia. (2012). Cifras informativas de sector biocombustibles, biodiesel de palma de aceite. Informe Fedebiocombustibles, Bogotá, Colombia. 8pp.

Garland, J. L. & Mills, A. L. (1991). Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon- source utilization. Appl. Environ. Microbiol., 57(8), 2351-2359.
https://doi.org/10.1128/AEM.57.8.2351-2359.1991

Hofvendahl, K. & Hahn-Hägerdal, B. (2000). Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microbial Technol., 26(2- 4), 87-107.
https://doi.org/10.1016/S0141-0229(99)00155-6

Hong, A. A., Cheng, K. K., Peng, F., Zhou, S., Sun, Y., Liu, C. M. & Liu, D. H. (2009). Strain isolation and optimization of process parameters for bioconversion of glycerol to lactic acid. J. Chem. Technol. Biotechnol., 84(10), 1576- 1581.
https://doi.org/10.1002/jctb.2209

Mazumdar, S., Blankschien, M. D., Clomburg, J. M. & Gonzalez, R. (2013). Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb. Cell Fact., 12: 1-7
https://doi.org/10.1186/1475-2859-12-7

Napoli, F., Olivieri, G., Russo, M., Marzocchella, A. & Salatino, P. (2011). Continuous lactose fermentation by Clostridium acetobutylicum- Assessment of acidogenesis kinetics. Bioresour. Technol. 102(2), 1608-1614.
https://doi.org/10.1016/j.biortech.2010.09.004

Panreac. Cultimed (2012). Manual básico de microbiología. PANREAC.

Pinelli, D., González-Vara, A., Matteuzzi, D. & Magelli, F. (1997). Assessment of kinetic models for production of L- and D- lactic acid isomers by Lactobacillus casei DMS 20011 and Lactobacillus coryniformis DMS 20004 in continuous fermentation. J. Ferment. Bioeng., 83(2), 209-212.
https://doi.org/10.1016/S0922-338X(97)83586-6

Posada, J. A., Rincón, L. E. & Cardona, C. A. (2012). Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem. Bioresour. Technol., 111: 282-293.
https://doi.org/10.1016/j.biortech.2012.01.151

Rivaldi, J., Sousa, M., Duarte, L., Ferreira, A., Cordeiro, C., de Almeida, M., de Ponces, A. & de Mancilha, I. (2013). Metabolism of biodiesel-derived glycerol in probiotic Lactobacillus strains. Appl. Microbiol. Biotechnol., 97(4), 1735-1743.
https://doi.org/10.1007/s00253-012-4621-z

Shuler, M. L. & Kargi, F. (2009). Bioprocess engineering basic concepts. 2 ed. United States: Prentice Hall PTR.

Vlysidis, A., Binns, M., Webb, C. & Theodoropoulos, C. (2011). Glycerol utilization for the production of chemicals: Conversion to succinic acid, a combined experimental and computational study. Biochem. Eng. J., 58-59: 1-11.
https://doi.org/10.1016/j.bej.2011.07.004

Yáñez, C. (2013). Extracción y caracterización de polihidroxibutirato producido a partir de Bacillus megaterium ATCC 14581 utilizando glicerol residuo de la industria de biodiesel como fuente de carbono. Tesis de pregrado, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, Colombia, 63pp.

Wee, Y. J., Kim, J. N., Yun, J. S. & Ryu, H. W. (2005). Optimum conditions for the biological production of lactic acid by a newly isolated lactic acid bacterium, Lactobacillus sp. RKY2. Biotechnol. Bioprocess Eng., 10(1), 23-28.
https://doi.org/10.1007/BF02931178

Zhang, X. W., Sun, T., Sun, Z. Y., Liu, X. & Gu, D. X. (1998). Time-dependent kinetic models for glutamic acid fermentation. Enzyme Microbiol. Technol., 22(3), 205-209.
https://doi.org/10.1016/S0141-0229(97)83082-7
How to Cite
López Giraldo, L. J., Gamboa Rueda, J. A., Lizcano González, V. A., Ordoñez Supelano, M. A., Pérez Mendoza, J. A., & Guzmán Luna, C. (2015). Unstructured kinetic model for batch fermentation of USP glycerol for lactic acid production. CT&F - Ciencia, Tecnología Y Futuro, 6(1), 81-94. https://doi.org/10.29047/01225383.28

Downloads

Download data is not yet available.
Published
2015-06-15
Section
Scientific and Technological Research Articles

More on this topic

Most read articles by the same author(s)