Thermophysical properties of castor oil (Ricinus communis l.) biodiesel and its blends

  • Osman Gokdogan Nevsehir Haci Bektas University.
  • Tanzer Eryilmaz Bozok University.
  • Murat Kadir Yesilyurt Bozok University.
Keywords: Castor oil, Transesterification, Fuel property, Biodiesel, Density, Kinematic viscosity

Abstract

In this study, biodiesel (methyl ester) was produced from Castor Oil (Ricinus communis L.) (CO) using sodium hydroxide (NaOH) and methanol (CH3OH) by the two-step transesterification method. Nine different fuel blends (2, 5, 10, 20, 30, 40, 50, 60 and 75% by volume blending with diesel) were prepared.

The density values of Castor Oil Biodiesel (COB) and its blends were measured at the temperature range from 0 to 93°C in steps of 5°C and the kinematic viscosity values of COB and its blends were measured at the temperature range from 30 to 100°C in the steps of 5°C. The results showed that the density, kinematic viscosity, calorific value, flash point, pH, copper strip corrosion and water content of COB are 932.40 kg.m-3, 15.069 mm2.s-1, 38.600 MJ.kg-1, 182°C, 7, 1a and 1067.7 mg.kg-1, respectively. The density and kinematic viscosity of fuel samples decrease as temperature increases; and also these properties decrease as a result of the increase in the amount of diesel in the blends.

References

Aksoy, F., Baydir, S. A. & Bayrakçeken, H. (2010a). An investigation on the effect in the viscosity of canola and corn oil biodiesels at a temperature range of 0 to 100°C. Energ. Source. Part A, 32(2), 157-164.
https://doi.org/10.1080/15567030802463869

Aksoy, F., Baydir, S. A. & Bayrakçeken, H. (2010b). The viscosity at different temperatures of soybean and sunflower biodiesels and diesel fuel blends. Energ. Source. Part A, 32(2), 148-156.
https://doi.org/10.1080/15567030802459719

Aksoy, F., Yabanova, I. & Bayrakçeken, H. (2011). Estimation of dynamic viscosities of vegetable oils using artificial neural networks. IJCT, 18(3), 227-233.

Aksoy, F., Yabanova, I., Bayrakçeken, H. & Aksoy, L. (2014). Estimating the dynamic viscosity of vegetable oils using artificial neural networks. Energ. Source. Part A, 36(8), 858-865.
https://doi.org/10.1080/15567036.2010.547921

Albuquerque, M. C. G., Machado, Y. L., Torres, A. E. B., Azevedo, D. C. S., Cavalcante, Jr., C. L., Firmiano, L. R. & Parente, Jr., E. J. S. (2009). Properties of biodiesel oils formulated using different biomass sources and their blends. Renew. Energ., 34(3), 857-859.
https://doi.org/10.1016/j.renene.2008.07.006

Al-Hamamre, Z. & Al-Salaymeh, A. (2014). Physical properties of (jojoba oil + biodiesel), (jojoba oil + diesel) and (biodiesel + diesel) blends. Fuel, 123: 175-188.
https://doi.org/10.1016/j.fuel.2014.01.047

Asmare, M. & Gabbiye, N. (2014). Synthesis and characterization of biodiesel from castor bean as alternative fuel for diesel engine. Amer. J. Energ. Eng., 2(1), 1-15.
https://doi.org/10.11648/j.ajee.20140201.11

ASTM D6751-15a. Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels. ASTM International, West Conshohocken, PA, 2015.

Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Masjuki, H. H. & Mekhilef, S. (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew. Sust. Energ. Rev., 16(4), 2070- 2093.
https://doi.org/10.1016/j.rser.2012.01.003

Balaji, G. & Cheralathan, M. (2013). Potential of various sources for biodiesel production. Energ. Source. Part A, 35(9), 831-839.
https://doi.org/10.1080/15567036.2011.594856

Benjumea, P., Agudelo, J. & Agudelo, A. (2008). Basic properties of palm oil biodiesel-diesel blends. Fuel, 87(10- 11), 2069-2075.
https://doi.org/10.1016/j.fuel.2007.11.004

Berman, P., Nizri, S. & Wiesman, Z. (2011). Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy, 35(7), 2861-2866.
https://doi.org/10.1016/j.biombioe.2011.03.024

Borugadda, V. B. & Goud, V. V. (2012). Biodiesel production from renewable feedstocks: Status and opportunities. Renew. Sust. Energ. Rev., 16(7), 4763-4784.
https://doi.org/10.1016/j.rser.2012.04.010

Chakrabarti, M. H. & Ali, M. (2009). Performance of compression ignition engine with indigenous castor oil biodiesel in Pakistan. Ned. Univ. J. Res., 6(1), 10-19.

Conceição, M. M., Candeia, R. A., Silva, F. C., Bezerra, A. F., Fernandes, Jr, V. J. & Souza, A. G. (2007). Thermoanalytical characterization of castor oil biodiesel. Renew. Sust. Energ. Rev., 11(5), 964-975.
https://doi.org/10.1016/j.rser.2005.10.001

Cvengroš, J., Paligová, J. & Cvengrošová, Z. (2006). Properties of alkyl esters base on castor oil. Eur. J. Lipid Sci. Technol., 108(8), 629-635.
https://doi.org/10.1002/ejlt.200600031

Demirbas, A. (2007). Importance of biodiesel as transportation fuel. Energ. Policy, 35(9), 4661-4670.
https://doi.org/10.1016/j.enpol.2007.04.003

Demirbas, A. (2008a). Biodiesel: A realistic fuel alternative for diesel engines. London: Springer-Verlag London.
https://doi.org/10.1016/S1351-4180(08)70586-5

Demirbas, A. (2008b). Comparison of transesterification methods for production of biodiesel from vegetable oils and fats. Energ. Convers. Manage., 49(1), 125-130.
https://doi.org/10.1016/j.enconman.2007.05.002

Demirbas, T. & Demirbas, A. H. (2010). Bioenergy, green energy. Biomass and biofuels. Energ. Source. Part A, 32(12), 1067-1075.
https://doi.org/10.1080/15567030903058600

Dias, J. M., Araújo, J. M., Costa, J. F., Alvim-Ferraz, M. C. M. & Almeida, M. F. (2013). Biodiesel production from raw castor oil. Energy, 53: 58-66.
https://doi.org/10.1016/j.energy.2013.02.018

DIN 51900-1. Testing of solid and liquid fuels - Determination of gross calorific value by the bomb calorimeter and calculation of net calorific value - Part 1: Principles, apparatus, methods. 2000-04.

DIN 51900-2. Testing of solid and liquid fuels - Determination of the gross calorific value by the bomb calorimeter and calculation of the net calorific value - Part 2: Method using isoperibol ot static, jacket calorimeter. 2003-05.

DIN 51900-3. Testing of solid and liquid fuels - Determination of gross calorific value by the bomb calorimeter and calculation of net calorific value - Part 3: Method using adiabatic jacket. 2005-01.

EN 590. Automotive fuels-Diesel-Requirements and test methods. 2004.

EN 14214. Automotive fuels. Fatty Acid Methyl Esters (FAME) for diesel engines. Requirements and test methods. 2008.

EN ISO 2160. Petroleum products-Corrosiveness to copper- Copper strip test. 1998.

EN ISO 2719. Determination of flash point-Pensky-Martens closed cup method. 2002

EN ISO 3104. Petroleum products-Transparent and opaque liquids-Determination of kinematic viscosity and calculation of dynamic viscosity. 1994

EN ISO 3675. Crude petroleum and liquid petroleum products-Laboratory determination of density-Hydrometer method. 1998.

EN ISO 3679. Determination of flash point-Rapid equilibrium closed cup method. 2004.

EN ISO 12185. Crude petroleum and petroleum products- Determination of Density- Oscillating U-tube method, 1996/Cor.1:2001.

EN ISO 12937. Petroleum products-Determination of water-Coulometric Karl Fischer titration method. 2000.

Eryilmaz, T. (2009). The effect of the different mustard oil biodiesel blending ratios on diesel engines performance. PhD Thesis, Natural and Applied Science, Selcuk University, Konya, Turkey, 130pp.

Eryilmaz, T. (2012). Investigation of temperature dependent kinematic viscosity variations of animal fat methyl ester and its blends. EEST Part A, 28(2), 1191-1198.

Eryilmaz, T., Yeşilyurt, M. K., Cesur, C., Yumak, H., Aydin, E., Çelik, S. A. & Yildiz, A. K. (2014a). Determination of fuel properties of biodiesel produced from safflower (Carthamus tinctorius L.) Dincer species grown in Yozgat province conditions. JAFAG, 31(1), 63-72.

Eryilmaz, T., Yeşilyurt, M. K., Yumak, H., Arslan, M. & Şahin, S. (2014b). Determination of the fuel properties of cottonseed oil methyl ester and its blends with diesel fuel. IJAET, 3(2), 79-90.
https://doi.org/10.18245/ijaet.90992

Esteban, B., Riba, J. R., Baquero, G., Rius, A. & Puig, R. (2012). Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy, 42: 164-171.
https://doi.org/10.1016/j.biombioe.2012.03.007

Goswami, A. (2011). An alternative eco-friendly avenue for castor oil biodiesel: Use of solid supported acidic salt catalyst. In: Stoytcheva, M. (Ed.). Biodiesel - Feedstocks and processing technologies. Croatia: InTech, (18), 379- 396
https://doi.org/10.5772/25395

Hincapié, G., Mondragón, F. & López, D. (2011). Conventional and in situ transesterification of castor seed oil for biodiesel production. Fuel, 90(4), 1618-1623.
https://doi.org/10.1016/j.fuel.2011.01.027

Ingle, S.S. & Nandedkar, V. M. (2012). Indigenous castor oil biodiesel an alternative fuel for diesel engine. IJMIE, 2(2), 62-64.

Issariyakul, T. & Dalai, A. K. (2014). Biodiesel from vegetable oils. Renew. Sust. Energ. Rev., 31: 446-471.
https://doi.org/10.1016/j.rser.2013.11.001

Jahirul, M. I., Brown, R. J., Senadeera, W., O'Hara, I. M. & Ristovski, Z. D. (2013). The use of artificial neural networks for ıdentifying sustainable biodiesel feedstocks. Energies, 6(8), 3764-3806.
https://doi.org/10.3390/en6083764

Kafuku, G. & Mbarawa, M. (2010). Biodiesel production from Croton megalocarpus oil and its process optimization. Fuel, 89(9), 2556-2560.
https://doi.org/10.1016/j.fuel.2010.03.039

Karmakar, A., Karmakar, S. & Mukherjee, S. (2010). Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol., 101(19), 7201-7210.
https://doi.org/10.1016/j.biortech.2010.04.079

Kerschbaum, S. & Rinke, G. (2004). Measurement of the temperature dependent viscosity of biodiesel fuels. Fuel, 83(3), 287-291.
https://doi.org/10.1016/j.fuel.2003.08.001

Kibazohi, O. & Sangwan, R. S. (2011). Vegetable oil production potential from Jatropha curcas, Croton megalocarpus, Aleurites moluccana, Moringa oleifera and Pachira glabra: Assessment of renewable energy resources for bio-energy production in Africa. Biomass Bioenergy, 35(3), 1352-1356.
https://doi.org/10.1016/j.biombioe.2010.12.048

Kilic, M., Uzun, B. B., Putun, E. & Putun, A. E. (2013). Optimization of biodiesel production from castor oil using factorial design. Fuel Process. Technol., 111: 105-110.
https://doi.org/10.1016/j.fuproc.2012.05.032

Kimilu, R. K., Nyang'aya, J. A. & Onyari, J. M. (2011). The effects of temperature and blending on the specific gravity and viscosity of jatropha methyl ester. ARPN J. Eng. Appl. Sci., 6(12), 97-105.

Knothe, G. (2005). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl ester. Fuel Process. Technol., 86(10), 1059-1070.
https://doi.org/10.1016/j.fuproc.2004.11.002

Knothe, G., Cermak, S. C. & Evangelista, R. L. (2012). Methyl esters from vegetable oils with hydroxyl fatty acids: Comparison of lesquerella and castor methyl esters. Fuel, 96: 535-540.
https://doi.org/10.1016/j.fuel.2012.01.012

Lin, L., Cunshan, Z., Vittayapadung, S., Xiangqian, S. & Mingdong, D. (2011). Opportunities and challenges for biodiesel fuel. Appl. Energy, 88(4), 1020-1031.
https://doi.org/10.1016/j.apenergy.2010.09.029

Mumtaz, M. W., Adnan, A., Anwar, F., Mukhtar, H., Raza, M. A., Ahmad, F. & Rashid, U. (2012). Response surface methodology: An emphatic tool for optimized biodiesel production using rice bran and sunflower oils. Energies, 5: 3307-3328.
https://doi.org/10.3390/en5093307

Okullo, A., Temu, A. K., Ogwok, P. & Ntalikwa, J. W. (2012). Physico-chemical properties of biodiesel from jatropha and castor oils. IJRER, 2(1), 47-52.

Ozcanli, M., Serin, H., Saribiyik, O.Y., Aydin, K. & Serin, S. (2012). Performance and emission studies of castor bean (Ricinus Communis) oil biodiesel and its blends with diesel fuel. Energ. Source. Part A, 34(19), 1808-1814.
https://doi.org/10.1080/15567036.2010.545800

Panwar, N. L., Shrirame, H. Y., Rathore, N. S., Jindal, S. & Kurchania, A. K. (2010). Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil. Appl. Therm. Eng., 30(2-3), 245-249.
https://doi.org/10.1016/j.applthermaleng.2009.07.007

Ramezani, K., Rowshanzamir, S. & Eikani, M. H. (2010). Castor oil transesterification reaction: A kinetic study and optimization of parameters. Energy, 35(10), 4142-4148.
https://doi.org/10.1016/j.energy.2010.06.034

Ramírez-Verduzco, L. F. (2013). Density and viscosity of biodiesel as a function of temperature: Empirical models. Renew. Sust. Energ. Rev., 19: 652-665.
https://doi.org/10.1016/j.rser.2012.11.022

Ramírez-Verduzco, L. F., García-Flores, B. E., Rodríguez- Rodríguez, J. E. & Jaramillo-Jacob, A. (2011). Prediction of the density and viscosity in biodiesel blends at various temperatures. Fuel, 90(5), 1751-1761.
https://doi.org/10.1016/j.fuel.2010.12.032

Rodenbush, C. M., Hsieh, F. H. & Viswanath, D. S. (1999). Density and viscosity of vegetable oils. JAOCS, 76(12), 1415-1419.
https://doi.org/10.1007/s11746-999-0177-1

Salvi, B. L. & Panwar, N. L. (2012). Biodiesel resources and production technologies - A review. Renew. Sust. Energ. Rev., 16(6), 3680-3689.
https://doi.org/10.1016/j.rser.2012.03.050

Saribiyik, O. Y., Özcanli, M., Serin, H., Serin, S. & Aydin, K. (2010). Biodiesel production from Ricinus Communis oil and its blends with soybean biodiesel. Stroj. Vestn. J. Mech. Eng., 56(12), 811-816.
https://doi.org/10.5545/sv-jme.2009.054

Saxena, P., Jawale, S. & Joshipura, M. H. (2013). A review on prediction of properties of biodiesel and blends of biodiesel. Procedia Engineering, 51: 395-402.
https://doi.org/10.1016/j.proeng.2013.01.055

Scholz, V. & Nogueira da Silva, J. (2008). Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy, 32(2), 95-100.
https://doi.org/10.1016/j.biombioe.2007.08.004

Sekmen, Y. (2007). Use of watermelon and flax seed oil methyl esters as a fuel in a diesel engine. Technology, 10(4), 295-302.

Shahid, E. M. & Jamal, Y. (2011). Production of biodiesel: A technical review. Renew. Sust. Energ. Rev., 15(9), 4732-4745.
https://doi.org/10.1016/j.rser.2011.07.079

Shrirame, H. Y., Panwar, N. L. & Bamniya, B. R. (2011). Biodiesel from castor oil - a green energy option. Low Carbon Economy, 2(1), 1-6.
https://doi.org/10.4236/lce.2011.21001

Singh, S. P. & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: A review. Renew. Sust. Energ. Rev., 14(1), 200-216.
https://doi.org/10.1016/j.rser.2009.07.017

Sreenivas, P., Mamilla, V.R. & Sekhar, K.C. (2011). Development of biodiesel from castor oil. Int. J. Energ. Sci., 1(3), 192-197.

Tat, M. E. & Van Gerpen, J. (1999). The kinematic viscosity of biodiesel and its blends with diesel fuel. JAOCS, 76(12), 1511-1513.
https://doi.org/10.1007/s11746-999-0194-0

Valente, O. S., José da Silva, M., Pasa, V. M. D., Belchior, C. R. P. & Sodré, J. R. (2010). Fuel consumption and emissions from a diesel power generator fuelled with castor oil and soybean biodiesel. Fuel, 89(12), 3637-3642.
https://doi.org/10.1016/j.fuel.2010.07.041

Valente, O. S., Pasa, V. M. D., Belchior, C.R.P. & Sodré, J. R. (2011). Physical-chemical properties of waste cooking oil biodiesel and castor oil biodiesel blends. Fuel, 90(4), 1700-1702.
https://doi.org/10.1016/j.fuel.2010.10.045

Yuan, W., Hansen, A. C. & Zhang, Q. (2009). Predicting the temperature dependent viscosity of biodiesel fuels. Fuel, 88(6), 1120-1126.
https://doi.org/10.1016/j.fuel.2008.11.011

Yuan, W., Hansen, A. C., Zhang, Q. & Tan, Z. (2005). Temperature-dependent kinematic viscosity of selected biodiesel fuels and blends with diesel fuel. JAOCS, 82(3), 195-199.
https://doi.org/10.1007/s11746-005-5172-6

Zuleta, E. C., Rios, L. A. & Benjumea, P. N. (2012). Oxidative stability and cold flow behavior of palm, sacha-inchi, jatropha and castor oil biodiesel blends. Fuel Process. Technol., 102: 96-101.
https://doi.org/10.1016/j.fuproc.2012.04.018
How to Cite
Gokdogan, O., Eryilmaz, T., & Yesilyurt, M. K. (2015). Thermophysical properties of castor oil (Ricinus communis l.) biodiesel and its blends. CT&F - Ciencia, Tecnología Y Futuro, 6(1), 95-128. https://doi.org/10.29047/01225383.29

Downloads

Download data is not yet available.
Published
2015-06-15
Section
Scientific and Technological Research Articles

More on this topic