Operating conditions influence on VMD and SGMD for ethanol recovery from aqueous solutions

  • Carlos Jesús Muvdi Nova Universidad Industrial de Santander.
  • Fredy Wsvaldo Barón Núñez Universidad Industrial de Santander.
  • Ricardo Javier Cotamo De la Espriella Universidad Industrial de Santander.
Keywords: Membrane distillation, Separation process, Ethanol, VMD, SGMD


This work focuses on Vacuum Membrane Distillation (VMD) and Sweeping Gas Membrane Distillation (SGMD) as a separating technique of ethanol from aqueous solutions. VMD was studied at moderate temperature (30, 40 and 50°C) and pressure (0.11, 0.20 and 0.30 atm) conditions, whereas SGMD was studied at different temperatures (50 and 70°C) and air-flow rates (10x10-6 and 20x10-6 m3.min-1). These techniques were experimentally studied using prepared ethanol-water solutions and fermented broths, with ethanol at 10% w/w. Under these operating conditions and using prepared ethanol-water solutions, an average total flux of 22.61 and 1.6 kg.m-2.h-1, and concentration factors of 2.3 and 1.7 were obtained for VMD and SGMD, respectively. For fermented broths, total flux of 17.66 and 0.9 kg.m-2.h-1, and concentration factors of 1.8 and 1.9 were obtained for VMD and SGMD, respectively. The fouling impact was also studied, finding a significant effect of pressure (vacuum) for VMD technique; mainly due to the biomass presence in the solution. Experimental results show that applying pressurization/depressurization cycles decreases membrane fouling, stabilizing flux and concentration in the permeate. While for SGMD configuration, the incidence of fouling was significantly lower.


Alkhudhiri, A., Darwish, N. & Hilal, N. (2012). Membrane distillation: A comprehensive review. Desalination, 287: 2-18.

Baker, R. W. (2004). Membrane technology and applications. Menlo Park: WILEY, 2nd edition.

Bowen, T. C., Noble, R. D. & Falconer, J. L. (2004). Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci., 245(1-2), 1-33.

Cerneaux, S., Strużyńska, I., Kujawski, W. M., Persin, M. & Larbot, A. (2009). Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. J. Membr. Sci., 337(1-2), 55-60.

Chapman, P., Oliveira, T., Livingston, A. G. & Li, K. (2008). Review: Membranes for the dehydration of solvents by pervaporation. J. Membr. Sci., 318(1-2), 5-37.

Cojocaru, C. & Khayet, M. (2011). Sweeping gas membrane distillation of sucrose aqueous solutions: Response surface modeling and optimization. Sep. Purif. Technol., 81(1), 12-24.

Hwang, H. J., He, K., Gray, S., Zhang, J. & Moon, I. S. (2011). Direct Contact Membrane Distillation (DCMD): Experiment study on the commercial PTFE membrane and modeling. J. Membr. Sci., 371(1-2), 90-98.

Izquierdo-Gil, M. A. & Jonsson, G. (2003). Factors affecting flux and ethanol separation performance in Vacuum Membrane Distillation (VMD). J. Membr. Sci., 214(1), 113-130.

Jaramillo, O., Gómez, M. & Fontalvo, J. (2012). Remoción de los inhibidores de la fermentación etanólica usando membranas de polidimetilsiloxano (PDMS) por pervaporación. Rev. Ion, 25(1), 51-59.

Khayet, M., Godino, P. & Mengual, J. I. (2000). Theory and experiments on sweeping gas membrane distillation. J. Membr. Sci., 165(2), 261-272.

Khayet, M., Mengual, J. I. & Matsuura, T. (2005). Porous hydrophobic/hydrophilic composite membranes: Application in desalination using direct contact membrane distillation. J. Membr. Sci., 252(1-2), 101-113.

Lee, C. H. & Hong, W. H. (2001). Effect of operating variables on the flux and selectivity in sweep gas membrane distillation for dilute aqueous isopropanol. J. Membr. Sci., 188(1), 79-86.

Lewandowicz, G., Bialas, W., Marczewski, B. & Szymanowska, D. (2011). Application of membrane distillation for ethanol recovery during fuel ethanol production. J. Membr. Sci., 375(1-2), 212-219.

Lin, Y. & Tanaka, S. (2006). Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol., 69(6), 627-642.

Qiu, W., Kosuri, M., Zhou, F. & Koros, W. J. (2009). Dehydration of ethanol- water mixtures using asymmetric hollow fiber membranes from commercial polyimides. J. Membr. Sci., 327(1-2), 96-103.

Rivier, C. A., García-Payo, M. C., Marison, I. W. & Von Stockar, U. (2002). Separation of binary mixtures by thermostatic sweeping gas membrane distillation: I. Theory and simulations. J. Membr. Sci., 201(1-2), 1-16.

Stanley, D., Bandara, A., Fraser, S., Chambers, P. J. & Stanley, G. A. (2010). The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol., 109(1), 13-24.

Xie, Z., Duong, T., Hoang, M., Nguyen, C. & Bolto, B. (2009). Ammonia removal by sweep gas membrane distillation. Water Research, 43(6), 1693-1699.

Zsirai, T., Buzatu, P., Aerts, P. & Judd, S. (2012). Efficacy of relaxation, backflushing, chemical cleaning and clogging removal for an immersed hollow fiber membrane bioreactor. Water Research, 46(14), 4499-4507.
How to Cite
Muvdi Nova, C. J., Barón Núñez, F. W., & Cotamo De la Espriella, R. J. (2015). Operating conditions influence on VMD and SGMD for ethanol recovery from aqueous solutions. CT&F - Ciencia, Tecnología Y Futuro, 6(2), 69-80. https://doi.org/10.29047/01225383.21


Download data is not yet available.
Scientific and Technological Research Articles

Most read articles by the same author(s)