Comparison of crude oil source-related indicators based on C15-, Cl5+ and C40+ parameters

  • Liliana López Universidad Central de Venezuela.
  • Salvador Lo Mónaco Universidad Central de Venezuela.
Keywords: Biomarkers, Organic facies, Sedimentation environment, Gas chromatography, Marine deposits, Crude oils


This work presents a comparative study of source-related indicators based on parameters determined in the C15-, C15+ and C40+ fractions in oil from the Barinas sub-basin, Venezuela. The objective was to determine whether the results obtained from High Temperature Gas Chromatography (HTGC-C40+) for the definition of organic facies and maturity, along with obtained by Whole-Oil Gas Chromatography (WOGC-C15-), to define maturity and secondary processes at the reservoirs are comparable with those obtained from biomarkers (GCMS-C15+). WOGC detected the presence of n-C5 to n-C9 alkanes, benzene and toluene, and the lack of these components indicates water washing. Oils from Caipe, La Victoria, Silvan, and Guafita not show biodegradation or water washing; Sinco show water washing and La Victoria and some from Guafita and Silvan oils presented evidence of evaporative fractionation. Biomarkers indicates that the oils derived from marine, algal and bacterial organic matter with variation in terrigenous organic matter input generated by a mature source rock with different lithofacies (siliciclastic-carbonatic). Based on CPIa (C42-C46) five oils have values > 1, which is associated with marine depositional environments. However, 21 samples have CPIa~=1, which considered typical of freshwater lacustrine environments, which differs from those determined in previous works based on biomarkers and isotopic studies.


Aboglila, S., Grice, K., Trinajstic, K., Dawson, D. & Williford, K. H. (2010). Use of biomarker distributions and compound specific isotopes of carbon and hydrogen to delineate hydrocarbon characteristics in the East Sirte Basin (Libya). Org. Geochem., 41(12), 1249-1258. doi:10.1016/j. orggeochem.2010.05.011

Alberdi, M., López, C. & Galarraga, F. (1996). Genetic classification of crude oils families in the Eastern Venezuelan Basin. Boletín de la Sociedad Venezolana de Geólogos, 21(1), 7-21.

Al-Shahristani, H. & Al-Thyia, M. J. (1972). Vertical migration of oil in Iraqi oil fields: Evidence based on vanadium and nickel concentrations. Geochim. Cosmochim. Acta, 36(9), 929-938. doi:10.1016/0016-7037(72)90013-0

Armstroff, A., Wilkes, H., Schwarzbauer, J., Littke, R. & Horsfield, B. (2006). Aromatic hydrocarbon biomarkers in terrigenous organic matter of Devonian to Permian age. Palaeogeogr. Palaeoclimatol. Palaeoecol., 240(1-2), 253-274. doi:10.1016/j.palaeo.2006.03.052

Bennett, B. & Larter, S. R. (2008). Biodegradation scales: Applications and limitations. Org. Geochem., 39(8), 1222- 1228.doi:10.1016/j.orggeochem.2008.02.023

Bray, E. & Evans, E. (1961). Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Acta, 22(1), 2-15. doi:10.1016/0016-7037(61)90069-2

Cañipa-Morales, N. K., Galán-Vidal, C. A., Guzmán-Vega, M.& Jarvie, D. M. (2003). Effect of evaporation on C7 light hydrocarbon parameters. Org. Geochem., 34(6), 813-826. doi:10.1016/S0146-6380(03)00002-0

Carlson, R. M., Teerman, S. C., Moldowan, J. M., Jacobson, S. R., Chan, E. I., Dorrough, K. S., Seetoo, W. C. & Mertani, (1993). High temperature gas chromatography of high wax oils. 22nd Annual Convention Proceedings. Jakarta, Indonesia.

Carlson, R. M., Jacobsen, S. R., Moldowan, J. M. & Chan, E. I. (1994). Potential application of high temperature gas chromatography to Middle Eastern petroleum exploration and production. Middle East Petroleum Geoscience Conference. Manama, Bahrain.

Carlson, R. M., Dias, R. F. & Schoell, M. (1997). Origins of high molecular weight alkanes >C40 in waxes from natural crude oils and bitumens based on carbon isotopic evidence. 18th International Meeting on Organic Geochemistry. Maastricht, The Netherlands.

Cassani, F., Gallango, O., Talukdar, S., Vallejos, C. & Ehrmann, U. (1988). Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. Org. Geochem., 13(1-3), 73-80. doi:10.1016/0146-6380(88)90027-7

Connan, J. & Cassou, A. (1980). Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Acta, 44(1), 1-23. doi:10.1016/0016-7037(80)90173-8

Del Rio, J. C., Philp, R. P. & Allen, J. (1992). Nature and geochemistry of high molecular weight hydrocarbons (above C40) in oils and solid bitumens. Org. Geochem., 18(4), 541-553. doi:10.1016/0146-6380(92)90117-G

Del Rio, J. C. & Philp, R. P. (1999). Field ionization mass spectrometric study of high molecular weight hydrocarbons in a crude oil and a solid bitumen. Org. Geochem., 30(5), 279-286. doi:10.1016/S0146-6380(99)00014-5

El Diasty, W. Sh. & Moldowan, J. M. (2012). Application of biological markers in the recognition of the geochemical characteristics of some crude oils from Abu Gharadig Basin, north Western Desert - Egypt. Mar. Petrol. Geol., 35(1), 28-40. doi:10.1016/j.marpetgeo.2012.03.001

Frankenberger, A., Brooks, R. R., Varela-Alvarez, H., Collen, J. D., Filby, R. H. & Fitzgerald, S. L. (1994). Classification of some New Zealand crude oils and condensates by means of their trace elements contents. Appl. Geochem., 9(1), 65-71. doi:10.1016/0883-2927(94)90053-1

Gaimes, S. M., Eglinton, G. & Rullkötter. J. (2009). Echoes of life: What fossils molecules reveal about earth history. Oxford: Oxford University Press.

Gil, E., Chigne, N. & Mello, M. (1996). Petróleos de la cuenca de Barinas-Apure analizados a través de marcadores biológicos. V Congreso Latinoamericano de Geoquímica Orgánica. Cancún México.

Gil, E. (1998). Indicadores geoquímicos asociados a las facies orgánicas que generaron los crudos del área de Barinas, Subcuenca de Barinas, Edo. Barinas, Venezuela. VI Congreso Latinoamericano de Geoquímica Orgánica. Porlamar, Isla de Margarita, Venezuela.

Gürgey, K. (2003). Correlation, alteration, and origin of hydrocarbons in the GCA, Bahar, and Gum Adasi fields, Western South Caspian Basin: Geochemical and multivariate statistical assessments. Mar. Petrol. Geol., 20(10), 1119-1139. doi:10.1016/j.marpetgeo.2003.10.002

Haeseler, F., Behar, F., Garnier, D. & Chenet, P. (2010). First stoichiometric model of oil biodegradation in natural petroleum systems: Part I - The BioClass 0D approach. Org. Geochem., 41(10), 1156-1170. doi:10.1016/j. orggeochem.2010.05.019

Harriman, G. E. (1994). The role of gas chromatography in petroleum exploration. In: Baugh, G.H. (Ed.). Gas chromatography: A practical approach. Oxford: Oxford University Press. 331-358.

Heath, D. J., Lewis, C. A. & Rowland, S. J. (1997). The use of high temperature gas chromatography to study the biodegradation of high molecular weight hydrocarbons. Org. Geochem., 26(11-12), 769-785. doi:10.1016/S0146-6380(97)00067-3

Hill, R. J., Jarvie D. M., Zumberge, J., Henry, M. & Pollastro, R. M. (2007). Oil and gas geochemistry and petroleum systems of the Fort Worth Bain. AAPG Bulletin, 91(4), 445-473.

Hong, Z., Guanghui, H., Cuishan, Z., Peirong, W. & Yongxin, Y. (2003). The quantitation and origin of C40+ n-alkanes in crude oils and source rocks. Org. Geochem., 34(7), 1037- 1046. doi:10.1016/S0146-6380(03)00038-X

Hsieh, M. & Philp, R. P. (2001). Ubiquitous occurrence of high molecular weight hydrocarbons in crude oils. Org. Geochem., 32(8), 955-966. doi:10.1016/S0146-6380(01)00071-7

Hsieh, M., Philp, R. P. & Del Rio, J. C. (2000). Characterization of high molecular weight biomarkers in crude oils. Org. Geochem., 31(12), 1581-1588. doi:10.1016/S0146-6380(00)00085-1

Huang, H., Larter, S. R. & Love, G. D. (2003). Analysis of wax hydrocarbons in petroleum source rocks from the Damintun depression, eastern China, using high temperature gas chromatography. Org. Geochem., 34(12), 1673-1687. doi:10.1016/S0146-6380(03)00172-4

Huang, H., Bowler, B. F. J., Oldenburg, T. B. P. & Larter, S. R. (2004). The effect of biodegradation on polycyclic aromatic hydrocarbons in reservoired oils from the Liaohe Basin, NE China. Org. Geochem., 35(11-12), 1619-1634. doi:10.1016/j.orggeochem.2004.05.009

Hughes, W. B. (1984). Use of thiophenic organosulfur compounds in characterizing crude oils derived from carbonate versus siliciclastic sources. In: Palacas, J. F. (Ed.) Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks. Tulsa: AAPG Stud. Geol. No. 18.

Hunt, J. M. (1996). Petroleum geochemistry and geology. New York: W.H. Freeman.

Jarvie, D. M. (2001). Williston basin petroleum systems: Inferences from oil geochemistry and geology. The Mountain Geologist, 38(1), 19-41.

Jarvie, D. M., Morelos, A. & Han, Z. (2001). Detection of pay zones and pay quality, Gulf of Mexico: Application of geochemical techniques. GCAGS Transations, 51: 151-160.

Labrador, H., López, L. & Galarraga, F. (1995). Estudio geoquímico de crudos del campo Guafita, estado Apure, Venezuela. Interciencia, 20(1), 30-36.

Larter, S., Huang, H., Adams, J., Bennett, B., Jokanola, O., Oldenburg, T., Jones, M., Head, I., Riediger, C. & Fowler, M. (2006). The controls on the composition of biodegraded oil in the deep surface: Part II - Geological controls on subsurface biodegradation fluxes and constraints on reservoir-fluid property prediction. AAPG Bulletin, 90(6), 921-938.

Larter, S., Huang, H., Adams, J., Bennett, B. & Snowdon, L. R. (2012). A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils. Org. Geochem., 45: 66-76. doi:10.1016/j.orggeochem.2012.01.007

Leythaeuser, D., Schaefer, R. G. & Weiner, B. (1979). Generation of low molecular weight hydrocarbons from organic matter in source beds as a function of temperature and facies. Chem. Geol., 25(1-2), 95-108. doi:10.1016/0009- 2541(79)90086-X

Lo Mónaco, S. López L. & Labastida, E. (1999). Correlación de crudos de la Subcuenca de Barinas, Venezuela. Rev. Lat. Am. Geoquímica Orgánica, 5: 47-56.

Lo Mónaco, S., López, L., Rojas, H., García, D., Premovic, P. & Briceño, H. (2002). Distribution of major and trace elements in La Luna Formation, Southwestern Venezuelan Basin. Org. Geochem., 33(12), 1593-1608. doi:10.1016/ S0146-6380(02)00122-5

López, L., Lo Mónaco, S., Espinoza, A. & Blanco, A. (1991). Distribución de vanadio, níquel y azufre en crudos y asfaltenos de los campos Mara y Mara Oeste, Cuenca del Lago de Maracaibo, Venezuela. Interciencia, 16(6), 333-342.

López, L., Lo Mónaco, S., Galarraga, F., Lira, A. & Cruz, C. (1995). V/Ni ratio in maltene and asphaltene fractions of crude oils from West Venezuelan Basin: correlation studies. Chem. Geol., 119(1-4), 255-262. doi:10.1016/0009- 2541(94)00100-M

López, L., Lo Mónaco, S. & Richardson, M. (1998). Use of molecular parameters and trace elements in oil-oil correlation studies, Barinas Sub-basin, Venezuela. Org. Geochem., 29(1-3), 613-629. doi:10.1016/S0146-6380(98)00084-9

López, L., Lo Mónaco, S. & Olivares C. (2002). Gammacerane in crude oils from the Barinas Apure basin, Venezuela. 8th Latin American Congress on Organic Geochemestry. Cartagena de Indias, Colombia.

López, L. & Lo Mónaco, S. (2004). Geochemical implications of trace elements and sulfur in the saturated, aromatic and resin fractions of crude oil from the Mara and Mara Oeste fields, Venezuela. Fuel, 83(3), 365-374. doi:10.1016/j. fuel.2003.06.001

López, L. & Lo Mónaco, S. (2010). Geoquímica de crudos de la faja petrolífera del Orinoco, Cuenca Oriental de Venezuela. Rev. Fac. Ing.UCV, 25(2), 41-50.

Mackenzie,A. S., Patience, R. L., Maxwell J. R., Vandenbroucke, M. & Durand, B. (1980). Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-I. Changes in the configurations of acyclic isoprenoid alkenes, steranes and triterpanes. Geochim. Cosmochim. Acta, 44(11), 1709-1721. doi:10.1016/0016-7037(80)90222-7

Mackenzie, A. S., Hoffmann, C. F. & Maxwell, J. R. (1981). Molecular parameters of maturation in the Toarcian shales, Paris Basin, France-III. Changes in aromatic steroid hydrocarbons. Geochim. Cosmochim. Acta, 45(8), 1345-1355. doi:10.1016/0016-7037(81)90227-1

Mango, F. D. (1987). An invariance in the isoheptanes of petroleum. Science, 273(4814), 514-517.

Mango, F. D. (1990a). The origin of light cycloalkanes in petroleum. Geochim. Cosmochim. Acta, 54(1), 23-27. doi:10.1016/0016-7037(90)90191-M

Mango, F.D. (1990b). The origin of light hydrocarbons in petroleum: A kinetic test of the steady-state catalytic hypothesis. Geochim. Cosmochim. Acta, 54(5), 1315-1323. doi:10.1016/0016-7037(90)90156-F

Mango, F.D. (1994). The origin of light hydrocarbons in petroleum: Ring preference in the closure of carbocyclic rings. Geochim. Cosmochim. Acta, 58(2), 895-901. doi:10.1016/0016-7037(94)90513-4

Mango, F.D. (1997). The light hydrocarbons in petroleum: a critical review. Org. Geochem., 26(7-8), 417-440. doi:10.1016/S0146-6380(97)00031-4

Moldowan, J. M., Seifert, W. K. & Gallegos, E. J. (1985). Relationship between petroleum composition and deposition environment of petroleum source rocks. AAPG Bulletin, 69(8), 1255-1268.

Moldowan, J. M., Dahl, J., Huizinga, B. J., Fago, F. J., Hickey, L. J. Peakman, T. M. & Taylor, D. W. (1994). The molecular fossil record of oleanane and its relation to angiosperms. Science, 265(5173), 768-771. doi:10.1126/ science.265.5173.768

Mueller, E. & Philp, R. P. (1998). Extraction of high molecular weight hydrocarbons from source rocks: an example from the Green River Formation, Uinta Basin, Utah. Org. Geochem., 28(9-10), 625-631. doi:10.1016/S0146- 6380(98)00031-X

Nytoft, H. P., Kildahl-Andersen, G. & Olukayode, J. M. (2010). Rearranged oleananes: Structural identification and distribution in a worldwide set of Late Cretaceous/Tertiary oils. Org. Geochem., 41(10), 1104-1118. doi:10.1016/j. orggeochem.2010.06.008

Odden, W., Patience, R. L. & Van Graas, G. W. (1998). Application of light hydrocarbons (C4-C13) to oil/ source rock correlations: a study of the light hydrocarbon compositions of source rocks and test fluids from offshore Mid-Norway. Org. Geochem., 28(12), 823-847. doi:10.1016/S0146-6380(98)00039-4

Odden, W. (1999). A study of natural and artificially generated light hydrocarbons (C4-C13) in source rocks and petroleum fluids from offshore Mid-Norway and the southernmost Norwegian and Danish sectors. Mar. Petrol. Geol., 16(8), 747-770. doi:10.1016/S0264-8172(99)00039-2

Odden, W. & Barth, T. (2000). A study of the composition of light hydrocarbons (C5-C13) from pyrolysis of source rock samples. Org. Geochem., 31(2-3), 211-229. doi:10.1016/ S0146-6380(00)00002-4

Peters, K. E. & Moldowan, J. M. (1993). The biomarker guide. Interpreting molecular fossils in petroleum and ancient sediments. New Jersey: Prentice Hall.

Peters, K., Frase, H., Amris, W., Rustanto, B. & Hermanto, E. (1999). Geochemistry of crude oils from Eastern Indonesia. AAPG Bulletin, 83(12), 1927-1942.

Peters, K. E., Walters, C. C. & Moldowan, J. M. (2005). The biomarker guide: Biomarkers and isotopes in petroleum exploration and earth history. Vol. 2. Cambridge: University Press.

Philippi, G.T. (1981). Correlation of crude oils with their oil source formation, using high resolution GLC C6-C7, component analyses. Geochim. Cosmochim. Acta, 45(9), 1495-1513. doi:10.1016/0016-7037(81)90281-7

Philp, R. P. & Hsieh, M. (2004). High molecular weight paraffins (> C40) in crude oils and source rocks. AAPG International Conference. Cancun, Mexico.

Seifert, W.K. & Moldowan, J.M. (1978). Applications of steranes, terpanes and monoaromatics to the maturation of crude oils. Geochim. Cosmochim. Acta, 42(1), 77-95. doi:10.1016/0016-7037(78)90219-3

Seifert, W.K. & Moldowan J.M. (1980). The effect of thermal stress on source rock quality as measured by hopane stereochemistry. In: Douglas, A.G., Maxwell, J.R. (Eds.). Advances in Organic Geochemistry. Oxford: Pergamon Press. 229-237.

Silvan, P., Datta, G. & Singh, R. (2008). Aromatic biomarkers as indicators of source, depositional environment, maturity and secondary migration in the oils of Cambay Basin, India. Org. Geochem., 39(11), 1620-1630. doi:10.1016/j. orggeochem.2008.06.009

Sinninghe Damsté, J.S., Kenig, F., Koopmans, M.P., Koster, J., Schouten, S., Hayes, J.M. & Leeuw, J. (1995). Evidence for gammacerane as an indicator of water-column stratification. Geochim. Cosmochim. Acta, 59(9), 1895-1900. doi:10.1016/0016-7037(95)00073-9

Sinninghe Damsté, J.S., Schouten, S. & Volkman, J.K. (2014). C27-C30 neohop-13(18)-enes and their saturated and aromatic derivatives in sediments: Indicators for diagenesis and water column stratification. Geochim. Cosmochim. Acta, 133: 402-421. doi:10.1016/j.gca.2014.03.008

Sofer, Z. (1984a). Stable carbon isotope composition of crude oils: Applications to source depositional environments and petroleum alteration. AAPG Bulletin, 68(1), 31-49.

Sofer, Z. (1984b). Stable carbon in petroleum exploration. In: Merrill, R. K (Ed.). Source and migration processes and evaluation techniques. Tulsa: AAPG. 103-106.

Ten Haven, H. L. (1996). Applications and limitations of Mango's light hydrocarbon parameters in petroleum correlation studies. Org. Geochem., 24(10-11), 957-976. doi:10.1016/S0146-6380(96)00091-5

Thanh, N. X., Hsieh, M. & Philp, R. P. (1999). Waxes and asphaltenes in crude oils. Org. Geochem., 30(2-3), 119-132. doi:10.1016/S0146-6380(98)00208-3

Thompson, K. (1979). Light hydrocarbons in subsurface sediments. Geochim. Cosmochim. Acta, 43(5), 657-672. doi:10.1016/0016-7037(79)90251-5

Thompson, K. (1983). Classification and thermal history of petroleum based on light hydrocarbons. Geochim. Cosmochim. Acta, 47(2), 303-316. doi:10.1016/0016-7037(83)90143-6

Thompson, K. (1987). Fractionated aromatic petroleum and generation of gas-condensates. Org. Geochem., 11(6), 573- 590. doi:10.1016/0146-6380(87)90011-8

Thompson, K. (1988). Gas-condensate migration and oil fractionation in deltaic systems. Mar. Petrol. Geol., 5(3), 237-246. doi:10.1016/0264-8172(88)90004-9

Thompson, K. (2006). Mechanisms controlling gas and light end composition in pyrolysates and petroleum: applications in the interpretation of reservoir fluid analyses. Org. Geochem., 37(7), 798-817. doi:10.1016/j. orggeochem.2006.03.004

Tissot, B. P. & Welte, D. H. (1984). Petroleum formation and occurrence. New York: Springer-Verlag.

Tuo, J. & Philp, R.P. (2003). Occurrence and distribution of high molecular weight hydrocarbons in selected non-marine source rocks from the Liaohe, Qaidam and Tarim Basins, China. Org. Geochem., 34(11), 1543-1558. doi:10.1016/S0146-6380(03)00174-8

Volkman, J. K., Alexander, R., Kagi, R. I., Noble, R. A. & Woodhouse, C. W. (1983a). A geochemical reconstruction of oil generation in the Barrow Sub-basin of Western Australia. Geochim. Cosmochim. Acta, 47(12), 2091-2105. doi:10.1016/0016-7037(83)90034-0

Volkman, J. K., Alexander, R., Kagi, R. I. & Woodhouse, C. W. (1983b). Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochim. Cosmochim. Acta, 47(4), 785-794. doi:10.1016/0016- 7037(83)90112-6

Volkman, J. K., Alexander, R., Kagi, R. I., Rowland, S. J. & Sheppard, P. N. (1984). Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia. Org. Geochem., 6: 619-632. doi:10.1016/0146-6380(84)90084-6

Wang, G., Chang, X., Wang, T. G. & Simoneit, B. R. T. (2015). Pregnanes as molecular indicators for depositional environments of sediments and petroleum source rocks. Org. Geochem., 78: 110-120. doi:10.1016/j. orggeochem.2014.11.004

Wenger, L. M., Davis, C. L. & Isaksen, G. H. (2002). Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reserv. Eval. Eng., 5(5), 375-383. doi: 10.2118/80168-PA

Zhang, S., Huang, H., Su, J., Zhu, G., Wang, X. & Larter, S. (2014). Geochemistry of Paleozoic marine oils from the Tarim Basin, NW China. Part 4: Paleobiodegradation and oil charge mixing. Org. Geochem., 67: 41-57. doi:10.1016/j. orggeochem.2013.12.008

Zhou, C., Li, X. & Jiang, S. (2005). Distribution and properties of high molecular weight hydrocarbons in crude oils and oil reservoir of Shengli oil field, China. J. Petrol. Sci. Eng., 48(3-4), 227-240. doi:10.1016/j.petrol.2005.06.001
How to Cite
López, L., & Lo Mónaco, S. (2016). Comparison of crude oil source-related indicators based on C15-, Cl5+ and C40+ parameters. CT&F - Ciencia, Tecnología Y Futuro, 6(3), 53-70.


Download data is not yet available.
Scientific and Technological Research Articles
Crossref Cited-by logo

More on this topic