Characterization of a ground penetrating radar shielded antenna using laboratory measurements, FDTD modeling and swarm global optimization

  • Andres Plata National Institute of Astrophysics, Optics and Electronics, Electronic Coordination. Santa María Tonantzintla, Puebla, México
  • Jheyston-Omar Serrano-Luna Universidad Industrial de Santander, Colombia https://orcid.org/0000-0002-4834-0325
  • Ana-Beatriz Ramirez-Silva Universidad Industrial de Santander, Colombia.
  • Sergio-Alberto Abreo-Carrillo Universidad Industrial de Santander, Colombia
Keywords: GPR, FWI, PSO, Radiation pattern GPR, FWI, PSO, Patrones de Radiación

Abstract

Full Waveform Inversion (FWI) is an optimization method that retrieves high-quality images of the ground's internal electromagnetic properties, such as permittivity, permeability, or conductivity. FWI requirements include an initial subsurface image of the parameters (starting point models), a wave propagation model, a cost function, and the source wavelet used during data acquisition. Usually, the source wavelet is estimated from the acquired data, or modelled from the antenna characteristics. In this study, the materials of the shielded antenna of a commercial Ground Penetrating Radar (GPR), developed by GSSI, are estimated using a global optimization method, from the observation measurements of the source signal. The estimated source is then used to model the wave propagation of the electromagnetic signal, and to estimate the electromagnetic parameters of the SEAM model via FWI. Experimental results show that the soil characteristics with the estimated source and pattern radiations retrieve better quality images than the inversion when the radiation pattern is neglected. In fact, the impact of using the correct source during the inversion is more evident when the initial model is distant from the correct solution.

Author Biographies

Jheyston-Omar Serrano-Luna, Universidad Industrial de Santander, Colombia

Faculty of Physical-Mechanical Engineering. School of Electrical, Electronic and Telecommunications Engineering. Bucaramanga, Santander, Colombia

Ana-Beatriz Ramirez-Silva, Universidad Industrial de Santander, Colombia.

Faculty of Physical-Mechanical Engineering. School of Electrical, Electronic and Telecommunications Engineering. Bucaramanga, Santander, Colombia

Sergio-Alberto Abreo-Carrillo, Universidad Industrial de Santander, Colombia

Faculty of Physical-Mechanical Engineering. School of Electrical, Electronic and Telecommunications Engineering. Bucaramanga, Santander, Colombia

References

Daniels, D. J. (2004). Ground penetrating radar. 2nd ed. London, United Kingdom: The institution of Electrical Engineers. doi: https://doi.org/10.1049/PBRA015E

Lavoué, F., R. Brossier, L. Métivier, S. Garambois, and J. Virieux. (2014). Two-dimensional permittivity and conductivity imaging by full waveform inversion of multioffset GPR data: A frequency-domain quasi-Newton approach, Geophys. J. Int., 197(1), 248–268. doi: https://doi.org/10.1093/gji/ggt528

Diamanti, N. and A. P. Annan. (2013). Characterizing the energy distribution around GPR antennas, J. Appl. Geophys., 99, 83–90. doi: https://doi.org/10.1016/j.jappgeo.2013.08.001

Plessix, R. E. (2006). A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int., 167(2), 495–503. doi: https://doi.org/10.1111/j.1365-246X.2006.02978.x

Golub, G. and V. Pereyra. (2003). Separable nonlinear least squares: The variable projection method and its applications, Inverse Probl., 19(2). doi: https://doi.org/10.1088/0266-5611/19/2/201

Fang, Z., R. Wang, and F. J. Herrmann. (2018). Source estimation for wavefield-reconstruction inversion, Geophysics, 83(4), R345–R359. doi: https://doi.org/10.1190/geo2017-0700.1

Liu, J., A. Abubakar, T. M. Habashy, D. Alumbaugh, E. Nichols, and G. Gao. (2018). Nonlinear inversion approaches for cross-well electromagnetic data collected in cased-wells, 78th Soc. Explor. Geophys. Int. Expo. Annu. Meet. SEG 2008, 1, 304–308. doi: https://doi.org/10.1190/1.3054810

Zhang, P., R. Gao, L. Han, and Z. Lu. (2021). Refraction waves full waveform inversion of deep reflection seismic profiles in the central part of Lhasa Terrane, Tectonophysics, 803(September 2020), 228761. doi: https://doi.org/10.1016/j.tecto.2021.228761

Ernst, J. R., A. G. Green, H. Maurer, and K. Holliger. (2007). Application of a new 2D time-domain full-waveform inversion scheme to crosshole radar data, Geophysics, 72(5). doi: https://doi.org/10.1190/1.2761848

Russell, E. and S. Yuhui. (2001). Particle swarm optimization: Developments, applications and resources., Inst. Electr. Electron. Eng., 1, 81–86. doi: http://dx.doi.org/10.1109/CEC.2001.934374

Regone, C., J. Stefani, P. Wang, C. Gerea, G. Gonzalez, and M. Oristaglio. (2017). Geologic model building in SEAM Phase II-Land seismic challenges, Lead. Edge, 36(9), 738–749. doi: https://doi.org/10.1190/tle36090738.1

Jol, H. M. (2009). Ground penetrating radar: theory and applications, 1st ed. Amsterdam, The Netherlands: Elsevier B.V. doi: https://doi.org/10.1016/B978-0-444-53348-7.00017-X

Stadler, S. and J. Igel. (2018). A numerical study on using guided GPR waves along metallic cylinders in boreholes for permittivity sounding, 2018 17th Int. Conf. Gr. Penetrating Radar, GPR 2018. doi: https://doi.org/10.1109/ICGPR.2018.8441666

Warren, C., A. Giannopoulos, and I. Giannakis. (2016). gprmax: Open source software to simulate electromagnetic wave propagation for ground penetrating radar, Comput. Phys. Commun., 209, 163–170. doi: https://doi.org/10.1016/j.cpc.2016.08.020

Taflove, A. and S. C. Hagness. (2005). Computational electrodynamics: the finite-difference time-domain method, 3rd ed. London, United Kingdom: Artech house, INC. doi: https://doi.org/10.1002/0471654507.eme123

Canavos, G., P. Meyer, S. Murray, and M. Scheaffer. (1988). Probability and statistics: applications and methods, 1st ed.28. Naucalpan de Juárez, México: McGraw-Hill. ISBN: 968-451-856-0

Sen, M. and P. Stoffa. (2013). Global optimization methods in geophysical inversion, 2nd ed. New York, United States: cambridge university press. doi: https://doi.org/10.1017/CBO9780511997570

Press, W., S. Teukolsky, and W. Vetterling. (1997). Numerical recipes in C: the art of scientific computing, 2nd ed. New York, United States: cambridge university press.

Virieux, J. and S. Operto. (2009). An overview of full-waveform inversion in exploration geophysics, Geophysics, 74, 1–26. doi: https://doi.org/10.1190/1.3238367

Goldstein, A. (1965). On newton’s method, Numer. Math., 7, 391–393. doi: https://doi.org/10.1007/BF01436251

Yong, M. (2012). Waveform-based velocity estimation from reflection seismic data, Ph.D. thesis, Dept. Geophysics, Colorado School of Mines, United States.

How to Cite
Plata-Galvis, A.-F., Serrano-Luna, J.-O., Ramirez-Silva, A.-B., & Abreo-Carrillo, S.-A. (2022). Characterization of a ground penetrating radar shielded antenna using laboratory measurements, FDTD modeling and swarm global optimization. CT&F - Ciencia, Tecnología Y Futuro, 12(1), 57–67. https://doi.org/10.29047/01225383.361

Downloads

Download data is not yet available.
Published
2022-06-29
Section
Scientific and Technological Research Articles

Funding data

Crossref Cited-by logo