Theoretical and numerical study of the combustion properties of premixed hydrogen/natural gas/air at a sub-atmospheric pressure of 0.849 Bar

Keywords: Combustion properties, natural gas-hydrogen mixtures


 Due to the energy transition worldwide, renewable energy sources complementary to fossil fuels are being sought. Considering that hydrogen generates only water when reacting with air, the application of hydrogen can play a leading and complementary role in the reduction of greenhouse gas (GHG) emissions. This work conducts a theoretical and numerical evaluation of the effect of adding hydrogen to natural gas (NG) combustion. Eight fuels, from 0% H2 up to 100% H2, by volume, were evaluated in 15% intervals. The volumetric and mass air requirement, H2O and CO2 production, wet and dry combustion products, as added to the heating value, Wobbe index, flammability ranges, dew point, and specific gravity, were calculated for each mixture at stoichiometric conditions. Some premixed flame combustion properties were calculated numerically for equivalence ratios from 0.5 to 1.5, using Medellín’s atmospheric conditions. These properties include the minimum ignition energy, critical quenching distance, diffusive thickness, laminar burning velocity, adiabatic flame temperature, flame structure, and ignition delay time. The latter property considered reagent preheat temperatures between 1000 K and 1600 K, finding an inverse relationship. Furthermore, increased hydrogen content showed an increase in flame temperature and laminar deflagration velocity, and a decrease in ignition delay time, flame thickness, critical quenching distance, and minimum ignition energy. Finally, the maximums and minimums of the properties considered were found to center at stoichiometric conditions for 100% natural gas, while the addition of hydrogen shifted the trend towards richer mixtures.

Author Biographies

Luisa Maya, Universidad de Antioquia

Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía, Universidad de Antioquia, Colombia

Alejandro Restrepo, Universidad de Antioquia

Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía, Universidad de Antioquia, Colombia.

Andrés Amell, Universidad de Antioquia

Grupo de Ciencia y Tecnología del Gas y Uso Racional de la Energía, Universidad de Antioquia, Colombia



Rievaj, V., J. Gaňa, & F. Synák, (2019). Is hydrogen the fuel of the future?, Transp. Res. Procedia, 40, 469–474.

Qadrdan, M., M. Abeysekera, M. Chaudry, J. Wu, & N. Jenkins, (2015). Role of power-to-gas in an integrated gas and electricity system in Great Britain, Int. J. Hydrogen Energy, 40(17), 5763–5775.

Smoliński, A. & N. Howaniec, (2020). Hydrogen energy, electrolyzers and fuel cells – The future of modern energy sector, Int. J. Hydrogen Energy, 45(9), 5607.

Ren, J., N. M. Musyoka, H. W. Langmi, M. Mathe, & S. Liao, (2017). Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. Int. J. Hydrogen Energy, 42(1), 289–311.

Oni, B. A., S. E. Sanni, A. J. Ibegbu, & A. A. Aduojo, (2021). Experimental optimization of engine performance of a dual-fuel compression-ignition engine operating on hydrogen-compressed natural gas and Moringa biodiesel. Energy Reports, 7, 607–619.

Cavana, M., A. Mazza, G. Chicco, & P. Leone, (2021). Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation. Applied Energy, 290, 116764.

Mayrhofer, M., M. Koller, P. Seemann, R. Prieler, & C. Hochenauer, (2021). Assessment of natural gas/hydrogen blends as an alternative fuel for industrial heat treatment furnaces. Int. J. Hydrogen Energy.

Zhang, H., Y. Li, J. Xiao, & T. Jordan, (2018). Large eddy simulations of the all-speed turbulent jet flow using 3-D CFD code GASFLOW-MPI. Nucl. Eng. Des., 328, 134–144.

Boulahlib, M. S., F. Medaerts, & M. A. Boukhalfa, (2021). Experimental study of a domestic boiler using hydrogen methane blend and fuel-rich staged combustion. Int. J. Hydrogen Energy.

Wahl, J. & J. Kallo, (2020). Quantitative valuation of hydrogen blending in European gas grids and its impact on the combustion process of large-bore gas engines. Int. J. Hydrogen Energy,45(56), 32534–32546.

Zareei, J., A. Rohani, F. Mazari, & M. V. Mikkhailova, (2021). Numerical investigation of the effect of two-step injection (direct and port injection) of hydrogen blending and natural gas on engine performance and exhaust gas emissions. Energy, 231, 120957.

Ozturk, M. & I. Dincer, (2021). Development of a combined flash and binary geothermal system integrated with hydrogen production for blending into natural gas in daily applications. Energy Convers. Manag., 227, 113501.

Zhen, X., X. Li, Y. Wang, D. Liu, & Z. Tian, (2020). Comparative study on combustion and emission characteristics of methanol/hydrogen, ethanol/hydrogen and methane/hydrogen blends in high compression ratio SI engine. Fuel, 267, 117193.

Echeverri-Uribe, C., A. A. Amell, L. M. Rubio-Gaviria, A. Colorado, & V. Mcdonell, (2016). Numerical and experimental analysis of the effect of adding water electrolysis products on the laminar burning velocity and stability of lean premixed methane/air flames at sub-atmospheric pressures. Fuel, 180, 565–573.

Pareja, J., H. J. Burbano, A. Amell, & J. Carvajal, (2011). Laminar burning velocities and flame stability analysis of hydrogen/air premixed flames at low pressure. Int. J. Hydrogen Energy, 36(10), 6317–6324.

Mueller, M. A., T. J. Kim, R. A. Yetter, & F. L. Dryer, (1999). Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet., 31(2), 113–125.<113::AID-KIN5>3.0.CO;2-0

Li, J., Z. Zhao, A. Kazakov, M. Chaos, F. L. Dryer, & J. I. Scire, (2007). A comprehensive kinetic mechanism for CO, CH2O, and CH 3OH combustion. Int. J. Chem. Kinet., 39(3), 109–136.

Mishra, S. K. &R. P. Dahiya, (1989). Adiabatic flame temperature of hydrogen in combination with gaseous fuels., Int. J. Hydrogen Energy, 14(11), 839–844.

Hu, E., Z. Huang, J. He, C. Jin, & J. Zheng, (2009). Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. Int. J. Hydrogen Energy, 34(11), 4876–4888.

Tang, C., Huang, Z., Jin, C., He, J., Wang, J., Wang, X., & Miao, H., (2008). Laminar burning velocities and combustion characteristics of propane-hydrogen-air premixed flames. Int. J. Hydrogen Energy, 33(18), 4906–4914.

Donohoe, N., Heufer, A., Metcalfe, W. K., Curran, H. J., Davis, M. L., Mathieu, O., ... & Güthe, F., (2014). Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures. Combust. Flame, 161(6), 1432–1443.

Ren, F., H. Chu, L. Xiang, W. Han, & M. Gu, (2019). Effect of hydrogen addition on the laminar premixed combustion characteristics the main components of natural gas. J. Energy Inst., 92(4), 1178–1190.

Grupo Energía Bogotá, (2021). Transportadora de Gas Internacional S.A. E.S.P. Available:

McAllister, S., J.-Y. Chen, & A. C. Fernandez-Pello, (2011). Fundamentals of Combustion Processes.

Turns, S. R., (2000). An Introduction to Combustion: Concepts and Applications McGraw-Hill Series in mechanical engineering. Singapore: McGraw-Hill.

Chemical Mechanism: Combustion Research Group at UC San Diego.

GRI-Mech 3.0.

Lopez, Y., A. M. García, & A. A. Amell, (2020). A numerical analysis of the effect of atmospheric pressure on the performance of a heating system with a self-recuperative burner. J. Therm. Sci. Eng. Appl., 12(3).

Yepes, H. A. & A. A. Amell, (2019). Effect of turbulence model on flameless combustion simulation of a regenerative furnace. Journal of Physics: Conference Series, 1257(1), 12016.

Lezcano, C., A. Amell, & F. Cadavid, (2013). Numerical calculation of the recirculation factor in flameless furnaces. DYNA, 80(180), 144–151. Recuperado de

Uribe Salazar, E. Y., B. A. Herrera Múnera, and I. D. Bedoya, (2019). Estudio teórico, numérico y experimental de la intercambiabilidad del gas natural en Antioquia. DYNA, 86, 346–354.

Amell, A. A., H. A. Yepes, & F. J. Cadavid, (2014). Numerical and experimental study on laminar burning velocity of syngas produced from biomass gasification in sub-atmospheric pressures. International Journal of Hydrogen Energy, 39(16), 8797–8802.

Cardona, C. A. & A. A. Amell, (2013). Laminar burning velocity and interchangeability analysis of biogas/C 3H8/H2 with normal and oxygen-enriched air. Int. J. Hydrogen Energy, 38(19), 7994–8001.

Thierry Poinsot, D. V., (2005). Theoretical and Numerical Combustion, Second Edition. Decis. Support Syst., 38(4), 557–573.

Warnatz, J., U. Maas, & R. W. Dibble, (1990). Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation.

J. DUCARME, M. G. & A. H. L., (1960). Progress in Combustion Science and Technology. Amsterdam: Elsevier.

de Vries, H., A. V. Mokhov, & H. B. Levinsky, (2017). The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances. Appl. Energy, 208, 1007–1019.

Yepes-Tumay, H. A. & A. Cardona-Vargas, (2019). Influence of high ethane content on natural gas ignition. Rev. Ingenio, 16(1), 36–42.

Zhao, Z. L., Z. Chen, & S. Y. Chen, (2011). Correlations for the ignition delay times of hydrogen/air mixtures. Chinese Sci. Bull., 56(2), 215–221.

Magison, E. C., (1972). Electrical instruments in hazardous locations. . Pittsburgh, USA: Instrument Society of America - ISA.

Glassman, I. & R. A. Yetter, (2008). Combustion - 4th Edition. San Diego, USA: Elsevier.

Glassman, I., R. A. Yetter, & N. G. Glumac, (2014). Combustion - 5th Edition. San Diego, USA: Elsevier.

Carpio, J., I. Iglesias, M. Vera, A. L. Sánchez, & A. Liñán, (2013). Critical radius for hot-jet ignition of hydrogen-air mixtures. Int. J. Hydrogen Energy, 38(7), 3105–3109.

Hong, S. W. & J. H. Song, (2013). Flame-quenching model of the quenching mesh for H2-air mixtures. J. Nucl. Sci. Technol., 50(12), 1213–1219.

Lees, F., (2012). Lees’ Loss Prevention in the Process Industries- Hazard Identification, Assessment and Control - 4th Edition. Oxford, UK: Elsevier.

Mahuthannan, A. M., J. S. Damazo, E. Kwon, W. L. Roberts, & D. A. Lacoste, (2019). Effect of propagation speed on the quenching of methane, propane and ethylene premixed flames between parallel flat plates. Fuel, 256, 115870.

Ono, R., M. Nifuku, S. Fujiwara, S. Horiguchi, & T. Oda, (2007). Minimum ignition energy of hydrogen-air mixture: Effects of humidity and spark duration. J. Electrostat., 65, 87–93.

How to Cite
Maya, L., Restrepo, A., & Amell Arrieta, A. A. (2021). Theoretical and numerical study of the combustion properties of premixed hydrogen/natural gas/air at a sub-atmospheric pressure of 0.849 Bar. CT&F - Ciencia, Tecnología Y Futuro, 11(2), 39-49.


Download data is not yet available.

Funding data

Crossref Cited-by logo