Low - medium enthalpy geothermal resource assessment in deep reservoirs of the Llanos Basin - Colombia

Keywords: Llanos Basin, geothermal play, hydrocarbons, recoverable resources


The exploration and exploitation of hydrocarbons in sedimentary basins such as the Llanos Basin of Colombia, have enabled the acquisition of large volumes of surface and subsurface data, for assessing the geothermal potential of deep aquifers. The integrated analysis of geothermal play elements such as temperature, reservoir - fluid  properties, and their depth in the basin, with the available hydrogeological-chemical data, allow us to define three regional plays as follows: Play A, characterized by naturally fractured reservoirs, in crystalline basement rocks - Paleozoic, with temperatures above 150 ºC, semi-confined aquifers; b) Play B, composed by Mesozoic quartz sandstone reservoirs, with primary porosity greater than 10%, temperatures between 75 ºC to 150 ºC, semi-confined aquifers, near to high hydraulic head zones with 500 m difference ranges in the regional piezometric surface; c) Play C, composed by Mesozoic quartz sandstones, high primary porosity, temperatures below 100 ºC, confined aquifers. Available well and Oil and Gas production data suggests that Play A is speculative, Play B is hypothetical, and Play C is known.


Huttrer, G.W. (2020). Geothermal Power Generation in the World 2015-2020 Update Report, Proceedings World Geothermal Congress 2020 [Preprint].

Norden, B. (2011). Geothermal Energy Utilization in Low-Enthalpy Sedimentary Environments. Edited by B. Norden. Helmholtz-Zentrum Potsdam. DOI: https://doi.org/10.2312/GFZ.b103-11066.

Amoo, L.M. (2019). Low-Enthalpy Geothermal Springs for Power Generation—An Alternative Approach, Open Access Library Journal, 6, e5866. . DOI: https://doi.org/10.4236/oalib.1105866 .

Beckers, K.F. et al. (2021). Evaluating the feasibility of geothermal deep direct-use in the United States, Energy Conversion and Management, 243(1), 114335, DOI: https://doi.org/10.1016/j.enconman.2021.114335.

Younger, P.L. (2015). Geothermal energy: Delivering on the global potential, Energies, 8 (10), 11737-11754, DOI: https://doi.org/10.3390/en81011737.

Axelsson, G. (2008). Production capacity of geothermal systems, in Workshop for Decision Makers on Direct Heating Use of Geothermal Resources in Asia, organized by UNU-GTP, TBLRREM and TBGMED, Tianjin, China, 11-18 May, 2008. pp. 11–18.

Edenhofer, O. et al. (2011). IPCC, 2011: Summary for Policymakers. In: IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, United States: Cambridge University Press. DOI: https://doi.org/10.5860/CHOICE.49-6309.

Gascuel, V. et al. (2020). Geothermal resource assessment of remote sedimentary basins with sparse data: lessons learned from Anticosti Island, Canada, Geothermal Energy, 8(3), 32, DOI: https://doi.org/10.1186/s40517-020-0156-1.

Espinoza-Ojeda, O.M., Santoyo, E. and Andaverde, J. (2011). A new look at the statistical assessment of approximate and rigorous methods for the estimation of stabilized formation temperatures in geothermal and petroleum wells, Journal of Geophysics and Engineering, 8(2), 233–258, DOI: https://doi.org/10.1088/1742-2132/8/2/010.

Muffler, L.J.P. and Guffanti, M. (1979). Assessment Of Geothermal Resources Of The United States - 1978., Geological Survey Circular (United States), DOI: https://doi.org/10.3133/cir790.

Brook, C.A. et al. (1978). Hydrothermal convection systems with reservoir temperatures >= 90oC, in Muffler, L.J.P. (ed.) Assessment of geothermal resources of the United States - 1978 - Geological Survey Circular 790, pp. 18–85.

Allis, R. and Moore, J. (2014). Can deep stratigraphic reservoirs sustain 100 MW power plants?, Transactions - Geothermal Resources Council, 38, 1009- 1016.

Babaei, M. and Nick, H.M. (2019). Performance of low-enthalpy geothermal systems: Interplay of spatially correlated heterogeneity and well-doublet spacings, Applied Energy, 253(1), 113569. DOI: https://doi.org/10.1016/j.apenergy.2019.113569.

Pinto, O. et al. (2021). Towards the Use of Geothermal Resources Available in Oil and Gas Sedimentary Basins in Colombia, in Congress, W.G. (ed.) Proceedings World Geothermal Congress. Reykjavik, p. 11.

Bernal, N., Ramirez, G. and Alfaro, C. (2000). Mapa Geotérmico de Colombia, Versión. Bogota.

Alfaro, C., Ballesteros, I. and Manrique, A. (2010), Mapa prelimiar de flujo de calor terrestre en la cuenca de los Llanos Orientales. Edited by SGC. Bogota: SGC, p. 257.

Alfaro, C., Alvarado, I. and Manrique, A. (2015). Heat Flow Evaluation at Eastern Llanos Sedimentary Basin , Colombia, in Proceedings World Geothermal Congress 2015, p. 9.

Aguilera, P. et al. (2019). Colombia - a geothermal opportunity, in 41st New Zealand Geothermal Workshop, Auckland, New Zealand, p. 11.

Bachu, S. et al. (1995). Geothermal regime and thermal history of the Llanos Basin, Colombia, American Association of Petroleum Geologists Bulletin, 79(1), 116–128. DOI: https://doi.org/10.1306/8D2B14D0-171E-11D7-8645000102C1865D.

Alfaro, C. et al. (2009). Mapa preliminar de gradientes geotérmicos de Colombia. Bogotá.

ECOPETROL. (2016). Reporte integrado de Gestión Sostenible 2016. Bogota.

Mesa, S.L. et al. (2018). Revisión del panorama actual del manejo de agua de producción en la industria petrolera colombiana Review of the current state of wastewater management in the Colombian oil industry, Gestión y Ambiente, 21(1), 87–98, DOI: https://doi.org/10.15446/ga.v21n1.69792

ANH. (2007). Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal, Agencia Nacional de Hidrocarburos - A.N.H.-.. Bogotá: Edited by ANH and B&M Exploration Ltda.

FAO (1964), Reconocimiento edafológico de los Llanos Orientales Colombia.

Lowrie, A., Cureau, S.A. and Sarria, A. (1981). Basement faults and uplift in the Colombian Llanos, Z. Geomorph N. F., pp. 1–11.

Cediel, F., Shaw, R.P. and Cáceres, C. (2005). Tectonic assembly of the Northern Andean Block, AAPG Memoir 79 , (815–848).

Alvarado, I. (2013). Evaluación del potencial gasifero en lutitas (gas shale) del Paleozoico en la cuenca de los Llanos Orientales, B.S. thesis, Departamento de Geociencias, Universidad Nacional de Colombia, Colombia.

Muñoz, F.A.T. (1991). El Paleozoico en la Cuenca de Los Llanos Orientales: Futuro Objetivo Exploratorio, in ACGGP (ed.) $th Simposio de Exploración de Cuencas Subandinas, Bogotá: ACGGP, p. 17, DOI: https://doi.org/10.3997/2214-4609-pdb.115.013esp.

Hernandez, O. (2006). Tectonic analysis of the Northwestern South America from integrated satellite, airborne and surface potential field anomalies, Ohio State University.

Toro-Toro, L.M., Moreno-Sánchez, M. and Gómez-Cruz, A. (2014). Metagabro del Ariari, plutonismo morb, cordillera oriental de Colombia, Boletin de Geologia, 36 (2), 15–24.

Moreno-López, M.C. and Escalona, A. (2015). Precambrian-Pleistocene tectono-stratigraphic evolution of the southern Llanos Basin, Colombia, AAPG Bulletin, 99(8), 1473–1501, DOI: https://doi.org/10.1306/11111413138.

Cáceres, C, Cediel, F. and Etayo, F. (2003). Guía introductoria de la distribución de facies sedimentarias de Colombia, Mapas de distribución de facies sedimentarias y armazón tectónico de Colombia a través del Proterozoico y del Fanerozoico, Ingeominas, p. 47.

Arminio, J.F. et al. (2013). Evidence for Precambrian Stratigraphy in Graben Basins below the Eastern Llanos Foreland, Colombia, in AAPG (ed.) AAPG International Conference and Exhbition, Cartagena, Colombia: AAPG.

Cooper, M., Addison, F. and Alvarez, R. (1995). Basin Development and Tectonic History of theLlanos Basin, Colombia, in AAPG MEMOIR, Petroleum basins of South America, Canada: American Association of Petroleum Geologists, DOI: https://doi.org/10.1306/M62593C35

Restrepo-Pace, P.A. and Cediel, F. (2010). Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas, Journal of South American Earth Sciences, 29 (4), 764-771, DOI: https://doi.org/10.1016/j.jsames.2010.06.002.

Rodríguez-Garcia, G. et al. (2019). Fragments of a Permian Arc on the Western Margin of the Neoproterozoic Basement of Colombia, In: Gómez, J. & Mateus–Zabala, D. (editors), The Geology of Colombia, Volume 1 Proterozoic – Paleozoic. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35, 34 p. 205–239, Bogotá: Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.35.2019.10.

Sarmiento, L.F. (2002). Mesozoic rifting and Cenozoic basin inversion history of the eastern cordillera, Colombian Andes - Inferences from tectonic models. Vrije University.

Vásquez, M.F. (2007). Mafic Magmatism In The Eastern Cordillera And Putumayo Basin, Colombia: Causes And Consequences, Universität Potsdam. Universität Postdam.

Campos, H. and Mann, P. (2015). Tectonostratigraphic Evolution of the Northern Llanos Foreland Basin of Colombia and Implications for Its Hydrocarbon Potential, in C.Bartolini and P. Mann (ed.), Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin. AAPG, pp. 517–546. DOI: https://doi.org/10.1306/13531948M1083651.

Bayona, G. (2018). El inicio de la emergencia en los Andes del norte: una perspectiva a partir del registro tectónico-sedimentológico del Coniaciano al Paleoceno, Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 42(165), 364–378, DOI: https://doi.org/10.18257/raccefyn.632.

Cortes, J.E. et al. (2010). Biomarkers and compound-specific stable carbon isotope of n-alkanes in crude oils from Eastern Llanos Basin, Colombia, Journal of South American Earth Sciences, 29(2), 198–213. DOI: https://doi.org/10.1016/j.jsames.2009.03.010.

Bayona, G. et al. (2007). Paleocene-middle miocene flexural-margin migration of the nonmarine Llanos foreland and basin of Colombia, CT y F - Ciencia, Tecnologia y Futuro, 3(3), 51–70.

Torrado, L. et al. (2020). Integrated seismic and well-log analysis for the exploration of stratigraphic traps in the Carbonera Formation, Llanos foreland basin of Colombia, Journal of South American Earth Sciences, 104, 102607, DOI: https://doi.org/10.1016/j.jsames.2020.102607.

Veloza, G. et al. (2015). Active mountain building along the eastern Colombian Subandes: A folding history from deformed terraces across the Tame anticline, Llanos Basin, Bulletin of the Geological Society of America, 127 (9-10), 1155–1173, DOI: https://doi.org/10.1130/B31168.1.

Mora, A. et al. (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia, Bulletin of the Geological Society of America [Preprint]. DOI:10.1130/B26186.1.

Parra, M. et al. (2009). Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia, Bulletin of the Geological Society of America, 121(5-6), 780–800, DOI: https://doi.org/10.1130/B26257.1.

Parra., M. (2008). Cenozoic foreland-basin evolution in the northern Andes: insights from thermochronology and basin analysis in the Eastern Cordillera, Colombia., Mathematisch-Naturwissenschaftliche Fakultät.

Hafiz, I. et al. (2019). Thin-skinned and thick-skinned structural control on the evolution of a foreland basin petroleum system - Parrando and Guavio anticlines, Eastern Cordillera Llanos foothills, Colombia, Journal of South American Earth Sciences, 96, 102373., DOI: 102373.

Romero, I. (2014). Palynological Evidence for the Paleoenvironmental History of the Miocene Llanos Basin, Eastern Colombia.

Casero, P., Salel, J.-F. and Rosatto, A. (1997). Multidisciplinary Correlative Evidences for Polyphase Geological Evolution of the Foot-Hills of the Cordillera Oriental, in VI Simposio Bolivariano de Exploración Petrolera en las Cuencas Subandinas, pp. 100–118. DOI: https://doi.org/10.3997/2214-4609-pdb.117.007eng.

Vargas Martínez, N.O. (2006). Zonas hidrogeológicas homogéneas de Colombia, Boletin Geologico y Minero, 117 (1), 47–61.

Person, M. et al. (2012). Hydrodynamic stagnation zones: A new play concept for the Llanos Basin, Colombia, AAPG Bulletin, 96(1), 23–41. DOI: https://doi.org/10.1306/08101111019.

Villegas, M.E. et al. (1994). Flow of formation waters in the Cretaceous-Miocene succession of the Llanos Basin, Colombia, American Association of Petroleum Geologists Bulletin, 78 (12), 1843–1862, DOI: https://doi.org/10.1306/A25FF319-171B-11D7-8645000102C1865D

Mora, A. et al. (2019). Water flow, oil biodegradation, and hydrodynamic traps in the Llanos Basin, Colombia, AAPG Bulletin, 103(5), pp. 1225–1264, DOI: https://doi.org/10.1306/1003181611317237.

Uribe, G. et al. (2007). Hidrodinámica e hidrogeoquímica del piedemonte llanero colombiano: hipótesis de rutas de migración a partir de técnicas hidrogeológicas, Boletín de Geología, 29 (1), p. 10.

Gonzalez-Penagos, F. et al. (2015). Origins of formation waters in the Llanos foreland basin of Colombia: Geochemical variation and fluid flow history, Geofluids, 14, 443-458, DOI: https://doi.org/10.1111/gfl.12086.

Gonzalez-Penagos, F., Moretti, Isabelle and Guichet, X. (2017). Fluid flow modeling in the Llanos Basin, Colombia, in AbuAli, M.A., Moretti, I., and Norgard, H.M. (eds), Petroleum Systems Analysis—Case Studies: AAPG Memoir 114. AAPG, pp. 191–217. DOI:10.1306/13602030M1143705.

Matiz, J.C. (2018). Metodología para determinar el modelo espacial del gradiente geotérmico en las cuencas sedimentarias del Valle Medio del Magdalena, Cordillera Oriental y Llanos Orientales en Colombia. Universidad Distrital “Francisco José de Caldas.

Mejia, E. et al. (2014). Geothermal development in Colombia, in Short Course VI on Utilization of Low- and Medium-Enthalpy Geothermal Resources and Financial Aspects of Utilization. Santa Tecla, El Salvador, p. 7.

Mercado, O. and Vargas, C. (2015). Una Aproximación a la Distribución de la Zona Dorada en Colombia, Geología Norandina, 12, p. 10.

Gonzalez-Penagos, F. et al. (2016). The distribution of thermogenic, bacterial and inorganic fluid sources in the petroleum systems of the Llanos Basin (Colombia) - Insights from the noble gases and carbon stable isotopes, Marine and Petroleum Geology, 71, 391–403, DOI: https://doi.org/10.1016/j.marpetgeo.2015.11.007.

Williams, C.F., Reed, M.J. and Anderson, A.F. (2011). Updating the Classification of Geothermal Resources, Proceedings of 36th workshop on Geothermal Reservoir Engineering, p. 7.

Agemar, T., Weber, J. and Moeck, I.S. (2018). Assessment and public reporting of geothermal resources in Germany: Review and outlook, Energies, 11(2), 332, DOI: https://doi.org/10.3390/en11020332.

Graterol, V. and Vargas, A. (2007). Levantamiento aeromagnético - cuenca de los Llanos Orientales. Bogotá, Colombia.

Graterol, V. (2008). Los sectores Norte y Oriental de la cuenca de los Llanos Orientales, Colombia. Bogotá, Colombia.

Cortés, E. (1989). Estudio del régimen de temperaturas en Colombia. Bogotá, Colombia.

Eslava, J. (1992). Perfil altitudinal de la temperatura media del aire en Colombia, Earth Sciences Research Journal, 1, 37–52.

Chaves Córdoba, B., Jaramillo Robledo, A. (1998). Regionalización de la temperatura del aire en Colombia., Cenicafé (Colombia), 49(3), 224–230.

Guzmán, D.M. et al. (2018). Zonificación climatica aplicada a levantamiento de suelos. Bogotá, Colombia.

NASA (2014). USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission (SRTM). Available at: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-non?qt-science_center_objects=0#qt-science_center_objects.

Farr, T.G. et al. (2007). The shuttle radar topography mission, Reviews of Geophysics, 45(2), 33, DOI: https://doi.org/10.1029/2005RG000183.

Kaczmarczyk, M., Tomaszewska, B. and Pajak, L. (2020). Geological and thermodynamic analysis of low enthalpy geothermal resources to electricity generation using ORC and Kalina cycle technology, Energies, 13(6), 1335, DOI: https://doi.org/10.3390/en13061335.

Stutz, G.R. et al. (2012). a Well By Well Method for Estimating Surface Heat Flow for Regional Geothermal Resource Assessment, 37th Workshop on Geothermal Reservoir Engineering [Preprint].

Cardoso, R.A. and Hamza, V.M. (2014). Heat Flow in the Campos Sedimentary Basin and Thermal History of the Continental Margin of Southeast Brazil, ISRN Geophysics, 2014, 19, DOI: https://doi.org/10.1155/2014/384752

Quintero, W. et al. (2014). Mapa de profundidad de la isoterma de Curie para Colombia. Bogotá, Colombia.

Takahashi, S. and Yoshida, S. (2018). A Desktop Review of Calculation Equations for Geothermal Volumetric Assessment, in Stanford, U. (ed.) 43rd Workshop on Geothermal Reservoir Engineering. California: U. Stanford, p. 18.

Shi, Y. et al. (2019). Present temperature field characterization and geothermal resource assessment in the Harbin Area, Northeast China, Energy Exploration and Exploitation, 37 (2), 834–848, DOI: https://doi.org/10.1177/0144598718815922.

Williams, C.F., Reed, M.J. and Mariner, R.H. (2008). A Review of Methods Applied by the U.S. Geological Survey in the Assessment of Identified Geothermal Resources, USGS Open-File Report 2008–1296, 1296, p. 27. Available at: http://pubs.usgs.gov/of/2008/1296/.

Lavigne, C. (2018). Resource Assessment of Geothermal Reservoir in Western Alberta and Evaluation of Utilization Options Using Non-Renewable Energy Displacement. Reykjavík University.

Jiang, G. et al. (2016). Heat flow, depth–temperature, and assessment of the enhanced geothermal system (EGS) resource base of continental China, Environmental Earth Sciences, 75, 1432. DOI: https://doi.org/10.1007/s12665-016-6238-5.

López, E. (2004). Deep crust models of Colombia. Bogotá.

Clauser, C. (2011). Thermal storage and transport properties of rocks, I: Heat capacity and latent heat, in Gupta, H. (ed.) Encyclopedia of Solid Earth Geophysics., p. 16. Springer-Verlag: Dordrecht. DOI: https://doi.org/10.1007/978-90-481-8702-7_238.

Alfaro, C. et al. (2010). Mapa preliminar de flujo de calor terrestre en la cuenca de los Llanos Orientales. Bogotá.

Sarmiento, Z. and Steingrimsson, B. (2011). Resource assessment I: Introduction and volumetric assessment, in UNIVERSITY NATIONS UNIVERSITY (ed.) Short Course on Geothermal Drilling, Resource Development and Power Plants. El Salvador: UNIVERSITY NATIONS UNIVERSITY, p. 15.

Mendrinos, D., Karytsas, C. and Georgilakis, P. (2008). Assessment of geothermal resources for power generation, JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 10(5), 1262–1267.

JICA. (2003). El estudio del desarrollo sostenible del agua subterránea en la Sabana de Bogotá en la República de Colombia: Informe final ; resumen del informe / Agencia de Cooperación Internacional del Japón (JICA). JICA. Edited by JICA. Bogotá, Colombia: JICA.

IDEAM. (2020). Atlas Climatológico de Colombia - Precipitación - Lluvia anual. Available at: http://atlas.ideam.gov.co/visorAtlasClimatologico.html.

Novoa, A.C., Villamor, C.A. and Morera, D.F. (2018). Validación de formulas de la evapotranspiración potencial en el departamento del Meta. Universidad Cooperativa de Colombia.

ANLA. (2016). Reporte sobre subzona hidrográfica del Río Ariari. Bogota.

Moeck, I.S. (2014). “Catalog of geothermal play types based on geologic controls,” Renewable and Sustainable Energy Reviews, vol. 37, doi: https://doi.org/10.1016/j.rser.2014.05.032.

Garchar, L. et al. (2016). Geothermal Play Fairway Analysis: Phase I Summary. in Stanford University (ed.), 41st Workshop on Geothermal Reservoir Engineering. Stanford, p. 6.

Moeck, I. et al. (2020). Geothermal Play Typing – Current Development and Future Trends of a Modern Concept for Geothermal Resources Assessment, in Proceedings World Geothermal Congress (ed.) Proceedings World Geothermal Congress 2020. Reykjavik, Iceland: Proceedings World Geothermal Congress, p. 6.

van Wees, J.D. et al. (2020). Accelerating geothermal development with a play-based portfolio approach, Geologie en Mijnbouw/Netherlands Journal of Geosciences, 99, 2020, E5, DOI: https://doi.org/10.1017/njg.2020.4.

Magoon, L.B. and Beaumont, E.A. (1999). Petroleum Systems. in Beaumont, E.A. and Foster, N.H. (eds) Exploring for Oil and Gas Traps, American Association of Petroleum Geologists, DOI: https://doi.org/10.1306/TrHbk624C3.

IDEAM (2020) Atlas Climatológico de Colombia - Evapotranspiración anual, Available at http://atlas.ideam.gov.co/visorAtlasClimatologico.

IDEAM (2010) Estudio Nacional del Agua ENA 2010 - Escorrentia, Bogota.

MOJICA, J. and VILLARROEL, C. (1992). Sobre la distribución y facies del Paleozoico inferior sedimentario en el extremo NW de Sudamerica, Geología Colombiana - An International Journal on Geosciences, 17(0).

Alfonso, C.A., Barrero, D. and et al., (2012). Sistemas Petrolíferos, evaluación de plays e inventario de oportunidades exploratorias del Paleozoico en la Cuenca Llanos (Colombia) - Reporte interno. Bogotá, Colombia.

Pérez, V.E., Ulloa, C.E. and Suárez, M.C. (1984). Geologic reconnaissance of the Guateque - Aguaclara area and the Apiay field, in Asociación Colombiana de Geólogos y Geofísicos del Petróleo (ed.) 22th Firld Conference, Bogotá, pp. 1–38.

Ulloa, C. and Rodríguez, E. (1979). Geología del cuadrángulo K - 12, Guateque, Boletín Geológico del Ingeominas, 22 (1), pp. 4–55, DOI: https://doi.org/10.32685/0120-1425/bolgeol22.1.1979.255

Sarmiento, L. F. (2011). “Petroleum Geology of Colombia. Geology and Hidrocarbon Potential Llanos Basin.,” in Petroleum Geology of Colombia. V. 9, F. Cediel and G. Ojeda, Eds. Bogotá, Col.: ANH, p. 177.

Blank, L. et al. (2021). Modeling, simulation, and optimization of geothermal energy production from hot sedimentary aquifers, Computational Geosciences, 25, 67–104, DOI: https://doi.org/10.1007/s10596-020-09989-8.

Marcaillou, B. et al. (2008). Thermal segmentation along the N. Ecuador-S. Colombia margin (1-4°N): Prominent influence of sedimentation rate in the trench, Earth and Planetary Science Letters, 272(1-2), 296-308, DOI: https://doi.org/10.1016/j.epsl.2008.04.049.

Kim, Y., Huh, M. and Young, E. (2020). Numerical Modelling to Evaluate Sedimentation Efects on Heat Flow and Subsidence during Continental Rifting, Geosciences, 10(11), 451, DOI: https://doi.org/10.3390/geosciences10110451.

Vieira, F. and Hamza, V. (2019). Assessment of Geothermal Resources of South America - A New Look, International Journal of Terrestrial Heat Flow and Applications, 2 (1), 46-57, DOI: https://doi.org/10.31214/ijthfa.v2i1.32.

Wang, S. et al. (2016). Exploitation and utilization of oilfield geothermal resources in China, Energies, 9 (10), 798, DOI: https://doi.org/10.3390/en9100798.

Mesa, L. (2021). Empieza el primer piloto para la generación de energía eléctrica mediante geotermia, La Republica.

Gómez, J. et al. (2015). Mapa Geológico de Colombia 2015. Escala 1:1 000 000, Servicio Geológico Colombiano [Preprint].

Reyes-Harker, A. et al. (2015). Cenozoic paleogeography of the Andean foreland and retroarc hinterland of Colombia, AAPG Bulletin, 99 (8), 1407 – 1453, DOI: https://doi.org/10.1306/06181411110.

Caballero, V.M., Rodríguez, G. and Al., E. (2020). .From Facies Analysis, Stratigraphic Surfaces, and Depositional Sequences to Stratigraphic Traps in the Eocene – Oligocene Record of the Southern Llanos Basin and Northern Magdalena Basin. in Gómez, J. and Mateus-Zabala, D. (ed.) The Geology of Colombia, Volume 3 Paleogene – Neogene, pp. 283–330. Bogotá: Servicio Geológico de Colombia. DOI: https://doi.org/10.32685/pub.esp.37.2019.10.

López, E. (2003). Upper Crust Models of Colombia. Bogotá, Colombia.

Cardozo, A., Gamba, N.R. and et al. (2016). Mapas de corredores exploratorios (PFWM) de la cuenca foreland de los Llanos Orientales - Reporte interno. Bogotá.


How to Cite
López- Ramos, E., Gonzalez-Penagos, F., A. Patiño, C. ., & López, A. (2022). Low - medium enthalpy geothermal resource assessment in deep reservoirs of the Llanos Basin - Colombia. CT&F - Ciencia, Tecnología Y Futuro, 12(1), 13–44. https://doi.org/10.29047/01225383.380


Download data is not yet available.
Review Articles


Crossref Cited-by logo
QR Code