Multi-solid model modified to predict paraffin precipitation in petroleum fluids at high temperatures and pressures

  • Juan Carlos M. Escobar Remolina Ecopetrol S.A. - Superintendencia de Yacimientos, Bogotá, Colombia
  • Wilson Barrios Ortiz Ecopetrol S.A. - Superintendencia de Yacimientos, Bogotá, Colombia
  • Gildardo Santoyo Ramírez Gems Ltda, Bucaramanga, Santander, Colombia
Keywords: multi-solid model, paraffin precipitation, high pressure and temperature, flow assurance

Abstract

Athermodynamic structure has been modified in order to calculate cloud point, fluidity and amount of precipitated wax under a wide range of temperature conditions, composition, and high pressures. The model is based on a combination of ideal solution concepts, fluid characterization, and formation of multiple solid phases using Cubic State Equations. The experimental data utilized for testing the prediction capacity and potentiality of a model exhibit different characteristics: continuous series synthetic systems of heavy alkanes, discontinuous series, and dead or living petroleum fluids with indefinite fractions such as C7+, C10+, C20+, and C30+. The samples were taken from the literature, petroleum fluids from the main Colombian reservoirs, and some samples of Bolivian fluids. Results presented in this paper show the minimum standard deviations between experimental data and data calculated with a model. This allows a progress in decision-making processes for flow assurance in reservoirs, wells, and surface facilities in the petroleum industry.

References

Barker, K. M., Bliger, J. M. , Hake, K. & Sallee, D. C. (2003). Paraffin Problems in Gás Systems. SPE Soc. Of Pet. Engrs., Pittsburgh, Pennsylvania. SPE 84827.

https://doi.org/10.2118/84827-MS

Barker, K. M., Sharum, D. B. & Brewer D. (1999). Paraffin Damage in High Temperature Formations, Removal and Inhibition. SPE Soc. Of Pet. Engrs., Oklahoma, Oklahoma. SPE 52156.

Dauphin, C., Daridon. J. L., Coutinho, J., Baylère, P. & Potin - Gautier, M. (1999). Content Measurements in Partially Frozen Paraffinic Systems. Fluid Phase Equilibria, 161: 135-151. https://doi.org/10.1016/S0378-3812(99)00155-7

Dalirsefat, R. & Feyzi, F. (2007). A thermodynamic model for wax deposition phenomena. Fuel, 86: 1402-1408. https://doi.org/10.1016/j.fuel.2006.11.034

Erickson, D. D., Niesen, V. G. & Brown, T. S. (1993). Thermodynamic Measurement and Prediction of Paraffin Precipitation in Crude Oil. SPE Annual Technical Conference and Exhibition, Houston, TX, October 3 - 6. SPE, 26604. https://doi.org/10.2118/26604-MS

Escobar-Remolina, J. C. M. (2006). Prediction of Characterics of Wax Precipitation in Synthetic Mixtures and Fluids of Petroleum: A New Model. Fluid Phase Equilibria, 240 (2): 197-203. https://doi.org/10.1016/j.fluid.2005.12.033

Escobar-Remolina, J. C. M. & Pelaez C.V. (2000). Informe Interno, Ecopetrol S.A.-Instituto Colombiano del Petróleo (ICP). Cod. 13040.

Fagin, K. M. (1945). Automatic Scrapers Used in West Edmond Oil Wells. Pet. Eng., June.105.

Ford, P. E., Ell, J. W. & Russell R. J. (1965). Frequent Pigging Helps Move Waxy Crude Below Its Pour-Point.Oil & Gás J., May 10, 183 - 189.

Gonzáles, D. L., Jamaluddin, K. M., Solbakken, T., Hirasaki, G. J. & Chapman, W. G. (2007). Impacto Flow Assurance in the Development of a deepwater Prospect. SPE Soc. Of Pet. Engrs., Anaheim, California. SPE 110833. https://doi.org/10.2118/110833-MS

Hansen, A. B., Larsen E., Pedersen, W. B. & Nielsen A. B. (1991). Wax Precipitation from North Sea crude Oils. 3. Precipitation and Dissolution of Wax Studied by Differential Scanning calorimetry. Energy & Fuels, 5 (6), 914 - 923. https://doi.org/10.1021/ef00030a021

Hansen, J. H., Fredenslund, Aa., Pedersen, K. S. & Ronningsen, H. P. (1988). A Thermodynamic Model For Predicting Wax Formation in Crude Oils. AIChE Journal, 34: 1937-1942. https://doi.org/10.1002/aic.690341202

Hong-Yan J., Bahman T., Ali D. & Adrian, C. T. (2004). Wax phase equilibria developing a thermodynamic model using a systematic approach. Fluid Phase Equilibria, 216: 201-217. https://doi.org/10.1016/j.fluid.2003.05.011

Lira-Galeana C., Firoozabadi A. & Prausnitz J. M. (1996). Thermodynamics of Wax Precipitation in Petroleum Mixtures. AIChE Journal, 42 (1): 239.

https://doi.org/10.1002/aic.690420120

Martos, C., Coto, Baudillo., Espada, J. J., Robustillo, M. D., Gómez S. & Peña, J. L. (2008). Experimental Determination and Characterization of Wax Fractions Precipitated as a Function of Temperature. Energy and Fuels, 22: 708 - 714. https://doi.org/10.1021/ef7003927

Nichita, D. V., Gousl, L. & Firoozabadi, A. (2001). Wax Precipitation in Gas Condensate Mixtures. SPE 74686, SPE Annual Technical Conference and Exhibition, Houston, TX. https://doi.org/10.2118/74686-PA

Pan, H., Firoozabadi, A. & Fotland, P. (1996). Pressure and Composition Effect on Wax Precipitation: Experimental Data nd Model Results. SPE 36740, SPE Annual Technical Conference and Exhibition, Denver, CO. SPE 110833.

Pauly, J., Dauphin, C. & Daridon, J. L. (1998). Liquid-Solid Equilibria in a Decane + Multi-ParaffinsSystem. Fluid Phase Equilibria, 149, 191.

https://doi.org/10.1016/S0378-3812(98)00366-5

Pedersen, K. S. (1993). Prediction of Cloud Point Temperatures and Amount of Wax Precipitated. Soc. Pet. Eng., Richardson, TX. SPE 27629.

Pedersen, K. S. & Christensen P. L. (2007). Phase behavior of petroleum reservoir fluids. Boca Raton, USA : CRC Press. https://doi.org/10.1201/9781420018257

Pedersen, K. S. & Skovborg, P. (1991). Wax Precipitation from North Sea Crude Oils. 4. Thermodynamic Modeling. Energy & Fuels, 5: 924- 932.

https://doi.org/10.1021/ef00030a022

Pedersen, W. B., Hansen, A. B., Larsen, E., Nielsen, A. B. & Roenningsen, H. P. (1991). Wax Precipitation from North Sea Crude Oils. 2 Solid-Phase as Function of Temperature Determined by Pulsed NMR. Energy and Fuels, 5: 908-13. https://doi.org/10.1021/ef00030a020

Pedersen, W. B., Hansen, A. B., Larsen, E. & Nielsen, A. B. (1991). Wax Precipitation from North Sea Crude Oils. 2. Solid-Phase Content as Function of Temperature Determined by Pulsed NMR. Energy & Fuels, 5:913. https://doi.org/10.1021/ef00030a020

Peláez C. V. & Escobar-Remolina J. C. M. (1995). Un simulador para el estudio del comportamiento de fases basado en la ecuación de estado de soave y cálculos de balances de materia. CTYF, Ciencia, Tecnología y Futuro, 1 (1): 83-94.

Peng, D. & Robinson, D. (1976). A New two-constant equation of state. Eng. Chem. Fund. April 28. 59-64. https://doi.org/10.1021/i160057a011

Prausnitz, J. M., Lichtenthaler, R. N. & Azevedo, E. G. (1986). Molecular Thermodynamics of Fluid Phase Equilibria. NJ, USA :Prentice-Hall Inc.

Reddy, S. R. (1986). A Thermodynamic Model for Predicting n-Paraffin Crystallization in Diesel. Fuel, 65: 1647-1652. https://doi.org/10.1016/0016-2361(86)90263-2

Riazi, M. R. & Al-Sahhaf, T. A. (1995). Physical Properties of n-Alkanes and n-Alkylhydrocarbons: Applications to Petroleum Mixtures. Ind. Eng. Chem. Res. 34: 4145.

https://doi.org/10.1021/ie00038a062

Riazi, M. R. & Al-Sahhaf, T. A. (1996). Physical properties of heavy petroleum fractions and crude oils. Fluid Phase Equilibria, 117: 217-224.

https://doi.org/10.1016/0378-3812(95)02956-7

Ronningsen, H. P., Somme, B. F. & Pedersen, K. S. (1997). An improved themodynamic model for wax precipitation: experimental foundation and application. 8th International Conference on Multiphase 97, Cannes, France .

Ronningsen, H. P., Bjoerndal, B., Hansen, A. B. & Pedersen, W. B. (1991). Wax Precipitation from North Sea Crude Oils. 1. Crystallization and Dissolution Temperatures, and Newtonian and Non-Newton Flow Properties. Energy and Fuels, 5: 895 - 908. https://doi.org/10.1021/ef00030a019

Smith, J. M., Van Ness, H. C. & Abbott, M. M. (1996). Introduction to Chemical Engineering Thermodynamics. Chapter 14. McGraw-Hill.

Vafaie-Safti, M., Mousavi-Dehghani, S. A. & Mohammad-Zadeh Bahar, M. (2000). Modification of multisolid phase model for prediction of wax precipitation: a new and effective solution method. Fluid Phase Equilibria.173: 65. https://doi.org/10.1016/S0378-3812(00)00405-2

Whitson, C. H. (1983). Characterizing Hydrocarbon Plus Fractions. Soc. Pet. Eng. J., 23: 683 - 694. https://doi.org/10.2118/12233-PA

Won, K. W. (1986). Continous Thermodynamics for Solid Solution - Liquid - Vapor Equilibria: Wax Phase Formation From Heavy Hydrocarbon Mixtures. Fluid Phase Equilibria, 30: 265 - 279. https://doi.org/10.1016/0378-3812(86)80061-9

How to Cite
Escobar Remolina, J. C. M. ., Ortiz, W. B., & Santoyo Ramírez, G. (2009). Multi-solid model modified to predict paraffin precipitation in petroleum fluids at high temperatures and pressures. CT&F - Ciencia, Tecnología Y Futuro, 3(5), 35–51. https://doi.org/10.29047/01225383.448

Downloads

Download data is not yet available.
Published
2009-12-31
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code

Some similar items: