Molecular and multiscale modeling: review on the theories and applications in chemical engineering

  • Giovanni Morales Medina Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia, A.A. 678.
  • Ramiro Martínez Rey Escuela de Ingeniería Química, Universidad Industrial de Santander, Bucaramanga, Santander, Colombia , A.A. 678.
Keywords: multiscale modeling, molecular modeling, quantum chemistry, DFT, ab initio, molecular mechanics, QM/MM

Abstract

We call molecular modeling to the application of suitable laws in the analysis of phenomena occurred at scales less than those accounted for by the macroscopic world.  Such different scales (including micro-, meso- and macroscales), can be linked and integrated in order to improve understanding and predictions of complex physical chemistry phenomena, thus originating a global or multiscale analysis. A considerable amount of chemical engineering phenomena are complex due to the interrelation among these different realms of length and time. Multiscale modeling rises as an alternative for an outstanding mathematical and conceptual representation of such phenomena. This adequate representation may help to design and optimize chemical and petrochemical processes from a microscopic point of view. Herein we present a brief introduction to both molecular and multiscale modeling methods. We also comment and examine opportunities for applying the different levels of modeling to the analysis of industrial problems. The fundamental mathematical machinery of the molecular modelling theories is presented in order to motivate the study of these new engineering tools. Finally, we show a classification of different strategies for applying multilevel analysis, illustrating various examples of each methodology.

References

Abraham, F. F., Broughton, J. Q., Bernstein, N. & Kaxiras, E. (1998). Spaning the Length Scales in Dynamic Simulation. Comp. Phys., 12 (6), 538.

https://doi.org/10.1063/1.168756

Albo, S. E., Broadbeltd, L. J. & Snurr, R. Q. (2006). Multiscale Modeling of Transport and Residence Times in Nanostructured Membranes.AIChe J., 52, 3679-3687.

https://doi.org/10.1002/aic.10998

Allen, M. P. & Tildesley, D. J. (1987). Computer simulation of liquids. Oxford Science Publications: New York.

Allinger, N. L., Chen, K. & Lii, J.-H. (1996). An Improved Force Field (MM4) for Saturated Hydrocarbons.J. Comput. Chem., 17: 642.

https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<642::AID-JCC6>3.0.CO;2-U

Altevogt, P., Evers, O. A., Fraaije, J. G. E. M., Maurits, N. M. & van Vlimmeren, A. C. (1999). The MesoDyn Project: Software for Mesoscale Chemical Engineering. THEOCHEM, 463: 139-143. https://doi.org/10.1016/S0166-1280(98)00403-5

Allured, V. S., Kelly, C. & Landis, C. R. (1991). SHAPES Empirical Force Field: New Treatment of Angular Potentials and Its Application to Square-Planar Transition-Metal Complexes.J. Am. Chem. Soc., 113, 1. https://doi.org/10.1021/ja00001a001

Anderson, D., McFadden, G., Wheeler, A. (1998). Annu. Rev. Fluid Mech. 30: 139. https://doi.org/10.1146/annurev.fluid.30.1.139

Bachlechner, M. E., Omeltchenko, A., Nakano, A., Kalia, R. K. and Vashishta, P., Ebbsjö, I., Madhukar, A. & Messina, P. (1998). Multimillion-Atom Molecular Dynamics Simulation of Atomic Level Stresses in Si(111)/Si3N4(0001) Nanopixels. Appl. Phys. Lett. 72: 1969-1971. https://doi.org/10.1063/1.121237

Becke, A. D. (1985). Local Exchange-Correlation Approximations and First-Row Molecular Dissociation Energies. Int. J. Quant. Chem. 27: 585-594.

https://doi.org/10.1002/qua.560270507

Braatz, R. D., Alkire, R. C., Seebauer, E., Rusli, E., Gunawan, R., Drews, T. O., Li, X. & He, Y. (2006). Perspectives on the Design and Control of Multiscale Systems. J. Pro. Control, 16, 193. https://doi.org/10.1016/j.jprocont.2005.06.001

Burkert, U. & Allinger, N. L. (1982). Molecular Mechanics. ACS monograph No. 177, American Chemical Society, Washington, D.C.

Çain, T., Wang, G., Martin, R., Zamanakos, G., Vaidehi, N., Mainz, D. T. & Goddard III, W. A. (2001). Multiscale Modeling and Simulation Methods with Application to Dendritic Polymers.Comp. Theor. Polymer Science, 11: 345-356. https://doi.org/10.1016/S1089-3156(01)00026-5

Cale, T. S., Bloomfield, M. O., Richards, D. F., Jansen, K. E.,& Gobbert, M. K. (2002). Integrated multiscale process simulation". Comp. Mat. Science, 23: 3-14.

https://doi.org/10.1016/S0927-0256(01)00216-6

Car, R. & Parrinello, M. (1985). Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett. 55: 2471-2474.

https://doi.org/10.1103/PhysRevLett.55.2471

Charpentier, J. C. (2002). The Triplet "Molecular Processes-Product-Process" Engineering: The Future of Chemical Engineering?. Chem. Eng. Science, 57: 4667-4690.

https://doi.org/10.1016/S0009-2509(02)00287-7

Charpentier, J. C. (2009). Among the Trend for a Modern Chemical Engineering the Third Paradigm: the Time and Length Multiscale Approach as an Efficient Tool for Process Intensification and Product Design and Engineering. Chem. Eng. Res. Des., In press, doi: 10106/j.cher.2009.03.08.

Charpentier, J. C. and McKenna, T. F. (2004). Managing Complex Systems: Some Trends for the Future of Chemical and Process Engineering. Chem. Eng. Science, 59, 1617-1640. https://doi.org/10.1016/j.ces.2004.01.044

Cornell, W. D. (1995). A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc., 117, 5179.

https://doi.org/10.1021/ja00124a002

Cramer, C. J. (2002). Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons, Ltd.: London.

De Pablo, J. J. (2005). Molecular and Multiscale Modeling in Chemical Engineering - Current View and Future Perspectives. AIChe J., 51, 2372.

https://doi.org/10.1002/aic.10623

De Pablo, J. J., Laso, M., Siepmann, J. I. & Suter, U. W. (1993). Continuum-Configurational-Bias Monte-Carlo Simulations of Long-Chain Alkanes. Mol. Phys., 80 (1), 55-63. https://doi.org/10.1080/00268979300102061

Doherty, M. F. (2001). Conceptual Design of Chemical Processes: Opportunities for Molecular Modeling. Foundations of Molecular Modeling and Simulation. AIChe Symposium Series 325, 97: 120-126.

Drummond, M. L. & Sumpter, B. G. (2007). Use of Drug Discovery Tools in Rational Organometallic CatalystDesign. Inorg. Chem., 46, 8613-8624.

https://doi.org/10.1021/ic700670s

Dzwinel, W., Yuen, D. A. & Boryczko, K. (2006). Bridging diverse physical scales with the discrete-particle paradigm in modeling colloidal dynamics with mesoscopic features.Chem. Eng. Sc., 61, 2169-2185. https://doi.org/10.1016/j.ces.2004.01.075

Fabricius, J., Engelsen, S. B. & Rasmussen, K. (1997). The Consistent Force Field. 5. PEF95SAC: Optimized Potential Energy Function for Alcohols and Carbohydrates. J. Carbohydr. Chem., 16, 751-772. https://doi.org/10.1080/07328309708006539

Fermeglia, M. and Pricl, S. (2009a). Multiscale Molecular Modeling in nanostructured material desing and process system Engineering. Com. Chem. Eng., in Press, doi:10.1016/j.compchemeng. 2009.04.006.

Fermeglia, M. and Pricl, S. (2009b). Multiscale Molecular Modeling of Dispersion of Nanoarticles in Polymer Systems of Industrial Interest. IUTAM Symposium on Modelling Nanomaterials and Nanosystems, edited by Pyrz R. and Rauhe J. C., Springer-Verlag, Berlin, D, 1, 261-270.

https://doi.org/10.1007/978-1-4020-9557-3_27

Fleer, G. H., Stuart, M. A., Scheutijens, J. M., Cosgrove, T., Vincent, B. (1993). Polymers at Interfaces. Chapman and Hall: London.

Foresman, J. B., Head-Gordon, M. & Pople, J. A., Frisch, M. J. (1992). Toward a Systematic Molecular Orbital Theory for Excited States.J. Phys. Chem., 96, 135.

https://doi.org/10.1021/j100180a030

Foresman, J. B. & Frisch, Æ (1996). Exploring Chemistry with Electronic Structure Methods. 2nd edition, Gaussian, Inc., Pittsburg, PA.

Frenkel, D. & Smit, B. (1996). Understanding Molecular Simulation: From Algorithms to Applications. San Diego: Academic Press.

Gao, J. (1992). Absolute Free Energy of Solvation from Monte Carlo Simulations Using Combined Quantum and Molecular Mechanical Potentials. J. Phys. Chem. 96, 537-540. https://doi.org/10.1021/j100181a009

Geerlings, P., De Proft, F. & Langenaeker, W. (2003). Conceptual Density Function Theory. Chem. Rev. 103, 1793 - 1873.

https://doi.org/10.1021/cr990029p

Glasser, D., Hildebrant, D. & Crowe,C. (1987). A Geometric Approach to Steady Flow Reactors: The Attainable Region and Optimization in Concentration Space. Ind. Eng. Chem. Res. 26, 1803. https://doi.org/10.1021/ie00069a014

Glotzer, S. C., Stauffer, D. & Jan, N. (1994). Phys. Rev. Lett., 72, 4109. https://doi.org/10.1103/PhysRevLett.72.4109

Gómez, B., Likhanova, N. V., Domínguez, M. A., Olivares, O., Hallen, J. M. & Martínez-Magadán, J. M. (2005). Theoretical Study of a New Group of Corrosion Inhibitors. J. Phys. Chem. A 109, 8950-8957. https://doi.org/10.1021/jp052188k

Grossmann, I. E. & Westerberg, A. E. (2000). Research Challenges in Process Systems Engineering. AIChe J., 46 (9), 1700 -1703.

https://doi.org/10.1002/aic.690460902

Grossmann, I. E. & Jackson, J. R. (2001). A Disjunctive Programming Approach for the Optimal Design of Reactive Distillation Columns. Comp. Chem. Eng., 25, 1661-1673. https://doi.org/10.1016/S0098-1354(01)00730-X

Gupta, V. K., Skaife, J. J., Dubrovsky, T. B. & Abbott, N. L. (1998). Optical Amplification of Ligand-Receptor Binding Using Liquid Crystals. Science, 279, 2077.

https://doi.org/10.1126/science.279.5359.2077

Haran, M., Goose, J. E., Clote, N. P. & Clancy, P. (2007). Multiscale Modeling of Self-Assembled Monolayers of Thiophenes on Electronic Material Surfaces. Langmuir, 23, 4897-4909. https://doi.org/10.1021/la063059d

Hohenberg, P. & Kohn W. (1964). Inhomogeneous Electron. Gas. Phys. Rev. 136, B864 - B871. https://doi.org/10.1103/PhysRev.136.B864

Hoogerbruge, P. J.; Koelman, J. M. V. A. (1992). Europhys. Lett., 18, 155. https://doi.org/10.1209/0295-5075/19/3/001

Hoover, W. G. (1985). Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A, 31, 1695. https://doi.org/10.1103/PhysRevA.31.1695

Huber, G. A. (2001). Multiscale Modeling of Large Biomolecules. Foundations of Molecular Modeling and Simulation. AIChe Symposium Series 325, 97: 54-60.

Hung, F. R., Franzen, S. & Gubbins, K. E. (2004). A Graduate Course on Multi-scale Modeling of Soft Matter, Chem. Eng. Ed., 38 (4), 242-249.

Ingram, G. D., Cameron, I. T. & Hangos, K. M. (2004). Classification and Analysis of Integrating Frameworks in Multiscale Modelling. Chem. Eng. Science 59, 2171 - 2187. https://doi.org/10.1016/j.ces.2004.02.010

Jensen, K. F., Hansen, U., Rodgers, S. T. & Venkataramani, R. (2001). Bridging Length Scales in Simulations of Vapor Phase Deposition Processes. Foundations of Molecular Modeling and Simulation. AIChe Symposium Series 325, Vol. 97, 35-43.

Karakasidis, T. E. & Charitidis, C. A. (2007). Multiscale Modeling in Nanomaterials Science. Mat. Science Eng.C, 27, 1082-1089.

https://doi.org/10.1016/j.msec.2006.06.029

Klamt, A. (2005). Cosmo-RS. From Quantum Chemistry to Fluid Phase Thermodynamics and Drug Design. Elsevier.

Klein, M. T., Hou, G., Bertolacini, R. J. & Broadbelt, L. J., Kumar, A. (2006). Molecular Modeling in Heavy Hydrocarbon Conversions. CRC Press. Taylor & Francis Group. USA. https://doi.org/10.1201/9781420030617

Koch, W. & Holthausen, M. C. (2001). A Chemist's Guide to Density Functional Theory. Second edition. Wiley-VCH Verlaf GmgH.

https://doi.org/10.1002/3527600043

Koelman, J. M. V. A.; Hoogerbruge, P. J. (1993). Europhys. Lett., 21, 363. https://doi.org/10.1209/0295-5075/21/3/018

Kohn, W. & Sham, L. (1965). Self-Consistent Equations Including Exchange and Correlation Effects. J. Phys. Rev., 140, A1133-A1138.

https://doi.org/10.1103/PhysRev.140.A1133

Kulkarni, P., Sureshkumar, R. & Biswas, P. (2005). Hierarchical Approach to Model Multilayer Colloidal Deposition in Porous Media. Environ. Sci. Technol., 39, 6361-6370. https://doi.org/10.1021/es0500557

Leach, A. (1996). Molecular Modeling: Principles and Applications. Longman, USA.

Levine, I. N. (2001). Química Cuántica. Segunda edición en Español. Prentice Hall, España.

Lidorikis, E., Bachlechner, M. E., Kalia, R. K., Nakano, A. & Vashishta, P. (2001). Coupling Length Scales for Multiscale Atomistics-Continuum Simulations: Atomistically Induced Stress Distributions in Si/Si3N4 Nanopixels. Phys. Rev. Lett., 87, 86104. https://doi.org/10.1103/PhysRevLett.87.086104

Lin, B., Sureshkumar, R. & Kardos, J. L. (2001). Electropolymerization of Pyrrole on PAN-Based Carbon Fibers: Experimental Observations and a Multiscale Modeling Approach. Chem. Eng. Science, 56, 6563-6575. https://doi.org/10.1016/S0009-2509(01)00313-X

Lowe, C.P. (1999). Europhys. Lett. 37, 145. https://doi.org/10.1209/epl/i1999-00365-x

MacKerell, A. D, Jr. , Bashford, D., Bellott, R. L., Dunbrack, R. L., Jr., Evanseck, J. D., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, W. E., III, Roux, B., Schlenkrich, M., Smith, J. C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. & Karplus, M. (1998). All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B, 102, 3586-3616. https://doi.org/10.1021/jp973084f

Maiti, A., Wescott, J. & Goldbeck-Wood, G (2005). Mesoscale modelling: recent developments and applications to nanocomposites, drug delivery and precipitation membranes. Int. J. Nanotechnology, 2, 198-214. https://doi.org/10.1504/IJNT.2005.008059

Majumber, D. & Broadbelt, L. J. (2006). A Multiscale Scheme for Modeling Catalytic Flow Reactors. AIChe J., 52, 4214-4228. https://doi.org/10.1002/aic.11030

Malevanets, A. and Kapral, R. (1999). J. Chem. Phys. 110, 8605. https://doi.org/10.1063/1.478857

Martínez, R., Huff, M. C. & Barteau, M. A. (2000). Synthesis of Ketenes from Carboxylic Acids on Functionalized Silica Monoliths at Short Contact Times. Applied Catalysis A: General, 200, 79-88. https://doi.org/10.1016/S0926-860X(00)00649-9

Martínez, R. (2001). Catalytic Synthesis of Ketenes on Silica Monoliths at Short Contact Times. A dissertation submitted in partial fulfillment of the requirements of Doctor of Philosophy in Chemical Engineering. University of Delaware.

McCammon, J. A. & Harvey, S. C. (1987). Dynamics of Proteins and Nucleic Acids. Cambridge University Press, New York.

https://doi.org/10.1017/CBO9781139167864

Mhadeshwar, A. B. & Vlachos, D. G. (2005). Hierarchical Multiscale Mechanism Development for Methane Partial Oxidation and Reforming and for Thermal Decomposition of Oxygenates.Rh. J. Phys. Chem. B, 109, 16819-16835. https://doi.org/10.1021/jp052479t

Monard, G. & Merz, K. Jr. (1999). Molecular Mechanical Methodologies Applied to Biomolecular Systems. Acc. Chem. Res., 32, 904-911.

https://doi.org/10.1021/ar970218z

Morales, G., Martinez, R. & Ziegler, T. A (2008). Theoretical Comparison of Ketene Dimerization in the Gas and Liquid Phase. J. Phys. Chem. A, 112, 3192-3200.

https://doi.org/10.1021/jp711204v

Morales, G. & Martínez, R. (2009). Thermochemical Properties and Contribution Groups for Ketene Dimers and Related Structures from Theoretical Calculations. J. Phys. Chem.A., 113, 8683-8703. https://doi.org/10.1021/jp9030915

Morales-Rodríguez, R. & Gani, R. (2009). Multiscale Modeling Framework for Chemical Product-Process Design. Comput. Aided Chem. Eng. 26, 495-500.

https://doi.org/10.1016/S1570-7946(09)70083-5

Nosé, S. (1984). A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys., 81, 511.

https://doi.org/10.1063/1.447334

Panagiotopoulos, A. Z. (1987). Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble.Mol. Phys., 61, 813.

https://doi.org/10.1080/00268978700101491

Panagiotopoulos, A. Z. & Stapleton, M. R. (1989). The Gibbs Method for Molecular-based Computer Simulation of Phase Equilibria.Fluid Phase Equilibria, 53, 133-141. https://doi.org/10.1016/0378-3812(89)80080-9

Panagiotopoulos, A. Z. (2001). Force-Field Development for Simion of Condensed Phases. Foundations of Molecular ling and Simulation. AIChe Symposium Series 325, Vol. 97, 61-70.

Pellin, M. J., Stair, P. C., Xion, C., Elam, J. W., Birrell, J., Curtiss, L., George, S. M., Han, C. Y., Iton, L., Kung, M. & Wang, H. H. (2005). Mesoporous Catalytic Membranes: Synthetic Control of Pore Size and Wall Composition. Catal. Lett., 102, 127-130. https://doi.org/10.1007/s10562-005-5843-9

Posel, Z., Lísal, M. & Brennan, J.K. (2009). Interplay between microscopic and macroscopic phase separations in ternary polymer melts: Insight from mesoscale modeling. Fluid Phase Equilibria, 283, 38-48. https://doi.org/10.1016/j.fluid.2009.05.014

Raimondeau, S. & Vlachos, D. G. (2002). Recent developments on multiscale, hierarchical modeling of chemical reactors. Chem. Eng. J. 90, 3-23.

https://doi.org/10.1016/S1385-8947(02)00065-7

Scocchi, G., Posocco, P., Fermeglia, M. & Pricl, S. (2007). Polymer-Clay Nanocomposites: A Multiscale Molecular Modeling Approach. J. Phys. Chem. B, 111, 2143-2151. https://doi.org/10.1021/jp067649w

Sengupta, D. (2003). Does the Ring Compound (CH3)2-GaNH2;3 Form During MOVPE of Gallium Nitride? Investigations via Density Functional and Reaction Rate Theories. J. Phys. Chem. B, 107, 291-297. https://doi.org/10.1021/jp021721i

Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press, Oxford.

Sumathi, R. & Green, W. H. Jr. (2002). Thermodynamic Properties of Ketenes: Group Additivity Values from Quantum Chemical Calculations. J. Phys. Chem.A, 106, 7937. https://doi.org/10.1021/jp021179y

Tenud, L., Weilenmann, M., Dallwigk, E. (1977). 1,3-Cyclobutanodionderivate aus Keten. Helv. Chim. Acta, 60, 975-977.

https://doi.org/10.1002/hlca.19770600328

Torres, J. A., Morales, G., Suarez, O. Y. & Sánchez, F. J. (2009). Mathematical Model of a Falling Film Reactor for Methyl Ester Sulfonation. Chemical Product and Process Modeling, 4 (5), Article 12. https://doi.org/10.2202/1934-2659.1393

Ungerer, P., Lachet, V. & Tavitian, B. (2006). Applications of Molecular Simulation in Oil and Gas Production and Processing. Oil & Gas Science and Technology - Revue de I'IFP 61, 3, 387. https://doi.org/10.2516/ogst:2006040a

Valchos, D. G. (1997). Multiscale Integration Hybrid Algorithms for Homogeneous-Heterogeneous Reactors. AIChe J., 43, 3031-3041.

https://doi.org/10.1002/aic.690431115

Vlachos, D. G., Mhadeshwar, A. B. & Kaisare, N.S. (2006). Hierarchical Multiscale Model-Based Design of Experiments, Catalysts, and Reactors for Fuel Processing. Comp. Chem. Eng., 30, 1712-1724. https://doi.org/10.1016/j.compchemeng.2006.05.033

Van Speybrook, V. (2001). Ab Initio and Dynamic Molecular Methods: A Useful Tool in the Study of Chemical Reactions. Proefschrift Ingediend tot het Behalen Van de Graad Van Doctor in de Toegepaste. Faculteit Toegepaste Wetenschappen, Belgium.

Venkataramani, R. (2000). Multiscale Models of the Metaloganic Vapor Phase Epitaxy Process. A Dissertation Submitted as a Partial Requirement for the Degree of Doctor. Massachusetts Institute of Technology, Dept. of Chemical Engineering.

Verlet, L. (1967). Computer Experiments on Classical Fluids. I. Thermodynamic Properties of Lennard-Jones Molecules. Phys. Rev., 159, 98-103.

https://doi.org/10.1103/PhysRev.159.98

Warshel, A. & Karplus, M. (1972). Calculation of Ground State and Excited State Potential Surfaces of Conjugated Molecules. I. Formulation and Parametrization. J. Am. Chem. Soc., 94, 5612. https://doi.org/10.1021/ja00771a014

Westmoreland, P. R., Kollman, P. A., Chaka, A. M., Cummings, P. T., Morokuma, K., Neurock, M., Stechel, E. B. & Vashishta, P. (2002). WTEC panel report on applications of molecular and materials modeling. International Technology Research Institute. World Technology Division.

https://doi.org/10.1007/978-94-017-0765-7

Windl, W. (2005). Ab Initio Assisted Process Modeling for Si-Based Nanoelectronic Devices. Mat. Science Eng. B, 124-125, 62-71.

https://doi.org/10.1016/j.mseb.2005.08.095

Woo, T. K., Margl, P. M., Deng, L., Cavallo, L. & Ziegler, T. (1999). Towards More Realistic Computational Modeling of Homogenous Catalysis by Density Functional Theory: Combine QM/MM and Ab Initio Molecular Dynamics. Catalysis Today, 50, 479-500. https://doi.org/10.1016/S0920-5861(98)00483-0

Young, D. C. (2001). Computational Chemistry. John Wiley & Sons, Inc. https://doi.org/10.1002/0471220655

How to Cite
Morales Medina, G., & Martínez Rey, R. (2009). Molecular and multiscale modeling: review on the theories and applications in chemical engineering. CT&F - Ciencia, Tecnología Y Futuro, 3(5), 205–223. https://doi.org/10.29047/01225383.458

Downloads

Download data is not yet available.
Published
2009-12-31
Section
Scientific and Technological Research Articles

Altmetric

QR Code