The structural style of footwall shortcuts along the eastern foothills of the Colombian esatern cordillera. Differences with other inversion related structures

  • Andrés Mora Ecopetrol S.A. – Instituto Colombiano del Petróleo, A.A. 4185 Bucaramanga, Santander, Colombia
  • Mauricio Parra Instituet fuer Geowissenschaftten Universitaet Potsdam, Potsdam, Germany
Keywords: footwall shortcuts, Ariari-Guatiquia-Region, eastern cordillera of Colombia, inversion tectonics, Servitá fault, vitrinite reflectance, lower cretaceous

Abstract

For the first time we show geological evidence of unambiguosly documented footwall shortcuts adjacent to the trace of inverted master nomal faults, in the Eastern Cordillera of Colombia. The Eastern Cordillera is an orogen whose width and location are traced by a Mesozoic graben. However, few structures related with the graben have been documented up to the date. In this study we propose the Ariari-Guatiquía region as a type location for a unique observation of footwall shortcuts. The master normal faults in the Ariari-Guatiquia region, and documented in this manuscript, were active during the Lower Cretaceous, partially inverted during the Andean orogenesis (since the Oligocene at least) and active still nowadays. In the hangingwall basins of those master normal faults, like the Servitá fault, all the Cretaceous syn-rift sequence has been deposited and maximum paleo temperatures in the lowermost Cretaceous rocks are higher than those for the Zircon FT partial annealing zone (~250°C; 23,15 K). In contraction, the inverted master normal faults are high angle basement involved features that generated the main topographic contrast and exposing Lower Cretaceous units or older. In contrast, in the adjacent footwall shortcuts only part of the syn-rift Lower Cretaceous sequence was deposited or more commonly was not deposited at all. Maximum paletemperatures reached by the basal Cretaceous units exposed in the hanging wall blocks of the footwall shortcuts are always less than those of the Zircon FT partial annealing zone (~250°C; 23,15 K). Finally we use AFT data to document that the footwall shortcuts originated during the Late Miocene and later as shallowly dipping faults generating low elevation hanging wall areas. All the described features are present in the Ariari-Guatiquia region. However, northwards and along strike in the Eastern foothills there is a lot of partially analogue scenarios with respect to those described in the Ariari-Guatiquia region. Therefore we deduce that a similar structural segmentation should be present along the entire Eastern foothills of the Colombian Eastern Cordillera. Based on that we propose plausible candidates for master inverted normal faults and footwall shorcuts in other areas of the Eastern foothills.

References

Allmendinger, R.W., Jordan, T. E., Kay, S. M., & Isacks, B. L. (1997). The evolution of the Altiplano-Puna Plateau of the Central Andes. Annual Review of Earth and Planetary Sciences, 25: 139-174. https://doi.org/10.1146/annurev.earth.25.1.139

Baby P., Moretti, I., Gullier, B., Oller, J., Limachi, R., & Specht, M. (1995). Petroleum System of the Northern and Central Bolivian Sub-Andean Zone. In: A.J. Tankard, R. Suarez and H.J. Welsink (Editors), Petroleum basins of South America. AAPG, 445 - 458. https://doi.org/10.1306/M62593C22

Colleta, B., Hebrard, F., Letouzey, J., Werner, P., & Rudkiweicz, J. L. (1990). Tectonic style and crustal structure of the Eastern Cordillera. Colombia from a balanced cross section, in Letouzey, J., ed., Petroleum and Tectonics in Mobile Belts. Paris, Editions Technip, 81-100.

Cooper, M. A., & Williams, G. D. (1989). Inversion Tectonics. Geological Society Special Publication, 44: 375. https://doi.org/10.1144/GSL.SP.1989.044.01.18

Cooper, M. A., Addison, F. T., Álvarez, R., Coral, M., R. H., G., Hayward, S. H., Martínez, J., Naar, J., Peñas, R., Pulham, A. J., & Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79 (10), 1421-1423. https://doi.org/10.1306/7834D9F4-1721-11D7-8645000102C1865D

Cortes, M., Colletta, B., & Angelier., J. (2006). Structure and tectonics of the central segment of the Eastern Cordillera of Colombia. Journal of South American Earth Sciences. 21 (4), 437-465. https://doi.org/10.1016/j.jsames.2006.07.004

Coward, M. P., Enfield, M. A., & Fischer, M. W. (1989) Devonian Basins of Northern Scotland: extension and inversion related to Late Caledonian -Varisican tectonics. In: Inversion Tectonics (Ed. by M. A. Cooper & G. D. Williams), Geological Society Special Publication, 44: 275-308.

https://doi.org/10.1144/GSL.SP.1989.044.01.16

Dorado, J. (1984). Contribución al conocimiento de la estratigrafía de la Formación Brecha de Buenavista (límite Jurásico-Cretácico, oeste de Villavicencio, Meta. Unpublished Bsc thesis work, Universidad Nacional de Colombia, Bogotá, Colombia.

Dunn, J., Hartshorn, K., & Hartshorn, P. (1995). Structural styles and hydrocarbon potential of the Sub Andean Thrust belt of southern Bolivia. In: A. J. Tankard, S. R. Suarez & H. J. Welsink (Editors), Petroleum basins of South America. American Association of Petroleum Geologist, Tulsa, Oklahoma, 523 - 543.

https://doi.org/10.1306/M62593C27

Echavarría, L., Hernández, R., Allmendinger, R., & Reynolds, J. (2003). Subandean thrust and fold belt of northwestern Argentina: geometry and timing of the Andean evolution. AAPG Bulletin, 87(6), 965-985. https://doi.org/10.1306/01200300196

Gil, W., Baby, P., & Ballard, J. F. (2001). Structure and palaeogeographic control of the Peruvian Subandean zone. Comptes Rendue de l'Académie de Sciences Series IIA Earth and Planetary Science, 333(11), 741-748. https://doi.org/10.1016/S1251-8050(01)01693-7

Hayward, A. B., & Graham, R. H. (1989). Some geometrical characteristics of inversion. In: Inversion Tectonics (Ed. by M. A. Cooper & G. D. Williams), Geological Society Special Publication, 44: 17-39. https://doi.org/10.1144/GSL.SP.1989.044.01.03

Hetzel, R., & Strecker, M. R. (1994). Late Mozambique Belt structures in western Kenya and their influence on the evolution of the Cenozoic Kenya Rift. J. Struct. Geol., 16: 189-201. https://doi.org/10.1016/0191-8141(94)90104-X

Hilley, G. E., Blisniuk, P. M., & Strecker, M. R. (2005). Mechanics and erosion of basement-cored uplift provinces: Journal of Geophysical Research B: Solid Earth. 110 (12), 1-22. https://doi.org/10.1029/2005JB003704

Huyghe, P., & Mugnier, J. L. (1992a).- Short-cut Geometry during structural inversions : competition between faulting and reactivation. Bull. Soc. Geol. Fr., 6 (163), 691-700.

Huyghe, P., & Mugnier, J. L. (1992b).- The influence of depth on reactivation in normal faulting. J. Struct. Geol., 14 (8/9), 991-998. https://doi.org/10.1016/0191-8141(92)90030-Z

Huyghe, P., & Mugnier, J. L. (1995) A comparison of inverted basins of the southern North Sea and inverted structures of the external Alps. In: Basin Inversion (Ed. by J. G. Buchanan & P. G. Buchanan), Geological Society Special Publication, 88: 339-353. https://doi.org/10.1144/GSL.SP.1995.088.01.19

Kammer, A., & Sánchez J., (2006). Early Jurassic rift structures associated with the Soapaga and Boyacá faults of the Eastern Cordillera, Colombia: Sedimentological inferences and regional implications. Journal of South American Earth Sciences, 21 (4), 412-422. https://doi.org/10.1016/j.jsames.2006.07.006

Kley, J., Monaldi, C. R., & Salfity, J. A. (1999). Along-strike segmentation of the Andean foreland: causes and consequences. Tectonophysics, 301(1-2), 75-94.

https://doi.org/10.1016/S0040-1951(98)90223-2

Kley, J., & Monaldi, C. R. (2002). Tectonic inversion in the Santa Barbara System of the central Andean foreland thrust belt, northwestern Argentina. Tectonics, 21: 11-1. https://doi.org/10.1029/2002TC902003

Lowell, J. D. (1995) Mechanics of basin invesion from wolrdwide examples. In: Basin Inversion (Ed. by J. G. Buchanan & P. G. Buchanan), 339-353. Geological Society of London Special Publication, 88. https://doi.org/10.1144/GSL.SP.1995.088.01.04

Martínez, J., (2006). Structural evolution of the Llanos foothills, Eastern Cordillera, Colombia. Journal of South American Earth Sciences, 21 (4), 510-520.

https://doi.org/10.1016/j.jsames.2006.07.010

McClay, K. R. (1995). The geometries and kinematics of inverted fault systems: a review of analogue model studies. In: Basin Inversion (Ed. by J. G. Buchanan & P. G. Buchanan), Geological Society Special Publication, 88: 97-118. https://doi.org/10.1144/GSL.SP.1995.088.01.07

Mitra, S. (1993). Geometry and kinematic evolution of inversion structures: American Association of Petroleum Geologists Bulletin, 77 ( 7),1159-1191.

https://doi.org/10.1306/BDFF8E2A-1718-11D7-8645000102C1865D

Mora, A., Parra, M., Strecker, M. R., Kammer, A., Dimaté, C., & Rodríguez, F. (2006). Cenozoic contractional reactivation of Mesozoic extensional structures in the Eastern Cordillera of Colombia. Tectonics, 25. TC2010, doi: 10.1029/ 2005TC001854. https://doi.org/10.1029/2005TC001854

Mora, A. (2007), Inversion tectonics and exhumation processes in the Eastern Cordillera of Colombia. Ph. D. Thesis, Universität Potsdam, 133 pp.

Mora, A., (2008). Edades de trazas de fision en Zircones y Apatitos de la Cordillera Oriental y su significado geológico. Reporte final, Ecopetrol S.A.-Instituto Colombiano del Petroleo (ICP).

Mora, A., Parra, M. Strecker, M. R., Sobel, E. R., Hooghiemstra, H., Torres, V., & Vallejo-Jaramillo, J., (2008). Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia. Bulletin of the Geological Society of America, 120 (7). doi: 10.1130/B26186.1 https://doi.org/10.1130/B26186.1

Parra, M., Mora, A., Jaramillo, C., Strecker, M. R., & Sobel, E. R. (2007). Cenozoic exhumation history in the northeastern Andes: evidence from low-T thermochronology and basin analysis in the Eastern Cordillera of Colombia, in VI EGU General Assembly, Vienna, Austria.

Paton, D. A. & Underhill, J. R. (2004). Role of crustal anisotropy in modifying the structural and sedimentological evolution of extensional basins: The Gamtoos Basin, South Africa. Basin Research, 16: 339-359. https://doi.org/10.1111/j.1365-2117.2004.00237.x

Renzoni, G. (1968). Geología del Macizo de Quetame. Geología Colombiana, 5: 75-127.

Ring, U. (1994). The influence of preexisting structure on the evolution of the Cenozoic Malawi rift (East African rift system), Tectonics, 13(2), 313-326.

https://doi.org/10.1029/93TC03188

Ulloa, C., & Rodríguez, E. (1979). Geología del Cuadrángulo K-12 (Guateque). Boletín Geológico del Ingeominas, XXII, 1: 5-55.

Underhill, J. R. & Paterson, S. (1998). Genesis of tectonic inversion structures: Seismic evidence for the development of key structures along the Purbeck-Isle of Wight Disturbance. Journal of the Geological Society, 155: 975-992. https://doi.org/10.1144/gsjgs.155.6.0975

Yamada, Y., & McClay, K. R. (2004) Analog modeling of inversion thrust structures: Experiments of 3D inversion structures above listric fault systems. In: Thrust Tectonics and Petroleum Systems (Ed. by K. R. McClay), American Association of Petroleum Geologists Memoir, 82: 276-302.

How to Cite
Mora, A., & Parra, M. (2008). The structural style of footwall shortcuts along the eastern foothills of the Colombian esatern cordillera. Differences with other inversion related structures. CT&F - Ciencia, Tecnología Y Futuro, 3(4), 7–21. https://doi.org/10.29047/01225383.460

Downloads

Download data is not yet available.
Published
2008-12-31
Section
Scientific and Technological Research Articles

Altmetric

QR Code