Assessment of terrigenous and marine sourced oils mixtures: Los Manueles field, Maracaibo basin Venezuela

Keywords: Mixed oil | Terrigenous oil | Marine oils | La Luna Formation | Capacho Formation | Maracaibo Basin | Los Manueles field.

Abstract

Seven crude oil samples from Los Manueles field, Maracaibo Basin, Venezuela, were analyzed to evaluate oil mixtures associated with different oil charges into the reservoirs. Analyses of the bulk physicochemical parameters suggest variations in the API gravity, the concentration of saturated and aromatic hydrocarbons, NSO compounds + asphaltenes, sulfur, vanadium, nickel, and the biomarkers distribution. The oils were divided in two groups: G-I with high saturated hydrocarbons and low NSO compounds + asphaltenes, sulfur, vanadium and nickel, a bimodal distribution of n-alkanes, high Pr/Ph and oleanane index, low steranes index, low abundance of tricyclic terpanes and C35S/C34S < 0.54 and G-II with low saturated hydrocarbons and high NSO compounds+ asphaltenes, sulfur, vanadium and nickel, an unimodal distribution of n-alkanes with low Pr/Ph and oleanane index, high steranes index, abundance of tricyclic terpanes and C35S/C34S > 0.70. G-I has a higher contribution of terrigenous organic matter compared to G-II, characterized by a higher contribution of marine organic matter. Source rock lithology biomarker indicators suggest marine shale as the source rock for oils of terrigenous origin. The results indicate that oils were generated by two independent source rocks, La Luna Formation and a secondary source rock with terrigenous organic matter, probably represented by the Capacho Formation.

References

Talukdar, S., Gallango, O.S., & Ruggiero, A. (1985).Formaciones La Luna y Querecual de Venezuela: Rocas Madres de Petróleo. Memorias VI Congreso Geológico Venezolano VI, 3606-3642.

Talukdar, S., Gallango, O., & Chin-Alien, M.(1986). Generation and migration of hydrocarbons in the Maracaibo basin: an integrated basin study. Organic Geochemistry, 10(1-3): 261-279. https://doi.org/10.1016/0146-380(86)90028-8

Gallango, O., & Cassani, F. (1992). Biologicalmarker maturity parameters of marine crude oils and rock extracts from the Maracaibo Basin, Venezuela.Organic Geochemistry, 18(2): 215-224. https://doi.org/10.1016/0146-380(92)90133-I

López, L., & Lo Mónaco, S. (2017). Vanadium, nickel and sulfur in crude oils and source rocks and their relationship with biomarkers: Implications for the origin of crude oils in Venezuelan basins. Organic Geochemistry, 104: 53-68 https://doi.org/10.1016/j.orggeochem.2016.11.007.

Tocco, R., Escobar, M., Ruggiero, A., & Galarraga, F.(1995). Geochemistry of oil seeps and rock samples of the Early Tertiary section from the North Andean flank of the Venezuelan Andes. Organic Geochemistry, 23(4):311-327. https://doi.org/10.1016/0146-6380(95)00013-5

James, K.H. (2000). The Venezuelan Hydrocarbon Habitat, Parte 1: Tectonics, structure, palaeogeography and source rocks. Journal of Petroleum Geology, 23(1): 5-53.DOI:10.1111/j.1747-5457.2000.tb00483.x

Llerena, J., & Marcano, F. (1997). El Sistema Petrolífero en la Subcuenca de Catatumbo, Cuenca de Maracaibo, Venezuela. Conference Proceedings 6th Simposio Bolivariano de Exploración Petrolera en las Cuencas Subandinas, Cartagena Septiembre 1997, cp-117-00034. https://doi.org/10.3997/2214-4609-pdb.117.035esp

Talukdar, S.C., & Marcano, F. (1994). Petroleum systems of the Maracaibo Basin, Venezuela, in: Magoon, L.B., Dow, W.G. (Ed.), The Petroleum System-from Source to Trap. American Association of Petroleum Geologists Memoir, 60, pp. 463-481. https://doi.org/10.1306/M60585C29

Ostos, M., Callejon, A., & Vivan, M. (1996). Petroleum systems of the northwestern Táchira Depression, Venezuelan Andes. The American Association of Petroleum Geologists Bulletin, 80(8). Article #90951. Paper presented at the AAPG International Conference and Exhibition, Caracas, Venezuela.

Rangel, A., & Hernández, R. (2007). Thermal maturity history and implications for hydrocarbon exploration in the Catatumbo Basin, Colombia. Ciencia, Tecnología y Futuro, 3(3): 7-24.

Lobo, C., Molina, A., Faraco, A., Méndez, J., Delgadillo, J., & Rincón, G. (2017). Methodology for petrophysical and geomechanical analysis of shale plays. Case study: La Luna and Capacho Formations, Maracaibo Basins. Paper presented at the SPE Latin America and Caribbean Petroleum Engineering Conference, Buenos Aires, Argentina, 1-34. https://doi.org/10.2118/185606-MS

Léxico Estratigráfico de Venezuela, (2016) Available at <http://www.pdv.com/lexico/lexicoh.htm>Version: 2011 (accessed 12.04.2016).

Blaser, R., & White, C. (1984). Source-rock and carbonization study, Maracaibo basin, Venezuela. American Association of Petroleum Geologists Special Volumes. Petroleum Geochemistry and Basin Evaluation, 229-252. https://doi.org/10.1306/M35439C14.

Bartok, P. (1993). Pre-breakup geology of the Gulf of Mexico – Caribbean: its relation to Triassic and Jurassic rift systems of the region. Tectonics, 12(2): 441–459. https://doi.org/10.1029/92TC01002

Sarmiento-Rojas, L.F., Van Wess, J.D., & Cloetingh, S. (2006). Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models. Journal of South American Earth Sciences, 21(4): 383–411. https://doi.org/10.1016/j.jsames.2006.07.003

López, L., Lo Mónaco, S., & Richardson, M. (1998). Use of molecular parameters and trace elements in oil-oil correlation studies, Barinas sub-basin, Venezuela. Organic Geochemistry, 29(1-3): 613-629. https://doi.org/10.1016/S0146-6380(98)00084-9

López, L., & Lo Mónaco, S. (2004). Geochemical implications of trace elements and sulfur in the saturate, aromatic and resin fractions of crude oil from the Mara and Mara Oeste fields, Venezuela. Fuel, 83(3): 365-374 https://doi.org/10.1016/j.fuel.2003.06.001.

Didyk, B.M., Simoneit, B.R.T., Brassell, S.C., & Eglinton, G. (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272: 216-222 https://doi.org/10.1038/272216a0

Tissot, B.P., & Welte, D.H. (1984). Petroleum Formation and Occurrence. Springer-Verlag, New York. https://doi.org/10.1007/978-3-642-87813-8

Connan, J., & Cassau, A. (1980). Properties of gas petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochimica et Cosmochimica Acta, 44(1): 1-23 https://doi.org/10.1016/0016-7037(80)90173-8

Peters, K., Frase, H., Amis, W., Rustanto, B., & Hermento, E. (1999). Geochemistry of crude oils from Eastern Indonesia. The American Association of Petroleum Geologists Bulletin, 83(12): 1927-1942. https://doi.org/10.1306/E4FD4643-1732-11D7-8645000102C1865D

Moldowan, M., Dahl, J., Huiznga, B., Fago, F., Hickey, L., Peakman, T., & Taylor, D. (1994). The molecular fossil record of oleanane and its relation to angiosperms. Science, 256(5173), 768-771. 10.1126/science.265.5173.768

Moldowan, J.M., Seifer, W., & Gallegos, E.J. (1985). Relationship between petroleum composition and depositional environment of petroleum source rocks. The American Association of Petroleum Geologists Bulletin, 69(8): 1255-1268 https://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D

Peters, K., Walters, C., & Moldowan, J. (2005). The Biomarker Guide. Cambridge University Press, Cambridge, (706 pp). https://doi.org/10.1017/CBO9781107326040

González, C., Iturralde, J., & Picard, X. (1980). Geología de Venezuela y de sus Cuencas Petrolíferas. Caracas, Ediciones Foninves, p. 1031.

Erlich, R.N., Palmer-Koleman, S.E., & Lorente, M.A. (1999). Geochemical characterization of oceanographic and climatic changes recorded in upper Albian to lower Maastrichtian strata, western Venezuela. Cretaceous Research, 20(5): 547-581. https://doi.org/10.1006/cres.1999.0167

Hughes, W.B., Holba, A.G., Dzou, L.I.P., 1995. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochimimica et Cosmochimica Acta, 59(17): 3581-3598. https://doi.org/10.1016/0016-7037(95)00225-O

Peters, K.E., & Moldowan, J.M. (1991). Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry, 17(1): 47-61 https://doi.org/10.1016/0146-6380(91)90039-M.

Seifert, W.K., & Moldowan, J.M. (1980). The effect of thermal stress on source rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, 12: 229-237. https://doi.org/10.1016/0079-1946(79)90107-1

Mackenzie, A.S., Patience, R.L., Maxwell, J.R., Vandenbroucke, M., & Durand, B. (1980). Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. I. Changes in the configurations of acyclic isoprenoid alkenes, steranes and triterpanes. Geochemimica et Cosmochimica Acta, 44(1): 1709-1721https://doi.org/10.1016/0016-7037(80)90222-7

Seifert, W.K., & Moldowan, J.M. (1978). Applications of steranes, triterpanes and monoaromatics to the maturation of crude oils. Geochimica et Cosmochimica Acta, 42(1): 71-95 https://doi.org/10.1016/0016-7037(78)90219-3

Ensminger A., Albrecht P., Ourisson G., & Tissot, B. (1977). Evolution of polycyclic hydrocarbons under the effect of burial (Early Toarcian shales, Paris Basin). In: Campos R., Goñi, J., (Eds.), Advances in Organic Geochemistry, Enadisma, Madrid, pp. 45-52.

Radke, M., Welte, D.H., & Willisch, H. (1982). Geochemical study on a well in the Western Canada basin: Relation of the aromatic distribution pattern to maturity of organic matter. Geochimimica et Cosmochimica Acta, 46(1): 1-10. https://doi.org/10.1016/0016-7037(82)90285-X

Radke, M., & Welte, D.H. (1983). The methylphenanthrene index (MPI): A maturity parameter based on aromatic hydrocarbons. In: Bjorøy, M., Albrecht, P., Cornford, C., de Groot, K., Eglinton, G., Galimov, E., Leythaeuser, D., Pelet, R., Rulkötter, J., Speers, G. (Eds.), Advances in Organic Geochemistry, John Wiley & Sons, pp. 504-512.

Alexander, R., Strachan, M.G., Kagi, R.I., & Van Bronswijk, W. (1986). Heating rate effects on aromatic maturity indicators. Organic Geochemistry, 10(4-6): 997-1003https://doi.org/10.1016/S0146-6380(86)80038-9

Cassani, F., Gallango, O., Talukdar, S., Vallejos, C., & Ehrmann, U. (1988). Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. Organic Geochemistry, 13(1-3): 73-80. https://doi.org/10.1016/0146-6380(88)90027-7

Radke, M., Welte, D.H., & Willsch, H. (1986). Maturity parameters based on aromatic hydrocarbons: influence of the organic matter type. Organic Geochemistry, 10(1-3): 51-63. https://doi.org/10.1016/0146-6380(86)90008-2

Van Aarssen B.G.K., Bastow T.P., Alexander A., & Kagi R.I. (1999). Distribution of methylated naphthalenes in crude oils: indicators of maturity, biodegradation and mixing. Organic Geochemistry, 30, 1213-1227 https://doi.org/10.1016/S1873-9881(04)80022-1.

Hill, R.J., Lu, S., Tang, Y., Henry, M., & Kaplan, I.R. (2004). C4-benzene and C4-naphthalene thermal maturity indicators for pyrolysates, oils and condensates. The Geochemical Society Special Publications, 9, 303-319. https://doi.org/10.1016/S1873-9881(04)80022-1

Alberdi, M., & López, L. (2000). Biomarker 18(H)-oleanane: a geochemical tool assesses Venezuelan petroleum systems. Journal of South American Earth Science, 13(8): 751-760. https://doi.org/10.1016/S0895-9811(00)00055-9

Alberdi, M., & Tocco, R. (1998). Trace metals and organic geochemistry of the Machiques Member (Aptian-Albian) and La Luna Formation (Cenomanian-Campanian) Venezuela. Chemical Geology, 160(1-2): 19-38. https://doi.org/10.1016/S0009-2541(99)00044-3

Rangel., A., Mora, C., & Parra, P. (2012). Evaluación estratigráfica y geoquímica de la Formación los Cuervos como roca cogeneradora de hidrocarburos en la Cuenca del Catatumbo. Paper presented at the XIII Latin American Congress on Organic Geochemistry. 12-15 November. Santa Marta Colombia.

Yoris, F., & Ostos, M., (1997). Geología de Venezuela. In: Schlumberger Surenco C.A. Venezuela WEC Well Evaluation Conference. Jolley Printing Inc, Houston, p 32-43.

Philp, R.P. (1994). Geochemical characteristics of oils derived predominantly from terrigenous source materials. In: Scott, A.C. and Fleet, A.J. (Eds), Coal and coal-bearing strata as oil-prone source rocks? Geological Society, London, Special Publications, 77, 71-91. https://doi.org/10.1144/GSL.SP.1994.077.01.04

Petersen, H.I., & Hertle, M. (2018). A review of the coaly source rocks and generated petroleums in the Danish North Sea: an under explored middle Jurassic petroleum system? Journal of Petroleum Geology, 41(2): 135-154. https://doi.org/10.1111/jpg.12697

Vandenbroucke, M., & Largeau, C. (2007). Kerogen origin, evolution and structure. Organic Geochemistry, 38(5): 719833. https://doi.org/10.1016/j.orggeochem.2007.01.001

Callejon, A., Ostos, M., Yoris, F., Briceño, H., Talukdar, S., & Lander, R. (2003). Petroleum systems in the Rubio and Burgua Depressions, Venezuela, the circum-gulf of Mexico and the Caribbean. In: Bartolini, C., Buffler, R.T. ans Blickwede, F. (Eds), Hydrocarbon Habitats, Basin Formation and Plate Tectonics, https://doi.org/10.1306/M79877C42

Yurewicz, D.A., Advocate, D.M., Lo, H.B., & Hernández, E.A. (1998). Source rocks and oil families, Southwest Maracaibo Basin (Catatumbo Subbasin), Colombia. American Association of Petroleum Geologists Bulletin, 82(7): 1329-1352 https://doi.org/10.1306/1D9BCA6B-172D-11D7-8645000102C1865D

How to Cite
López, L., Crespo, J., Lo Monaco, S., & Marcano, F. (2022). Assessment of terrigenous and marine sourced oils mixtures: Los Manueles field, Maracaibo basin Venezuela. CT&F - Ciencia, Tecnología Y Futuro, 12(2), 5–16. https://doi.org/10.29047/01225383.470

Downloads

Download data is not yet available.
Published
2022-12-30
Section
Scientific and Technological Research Articles

Altmetric

Funding data

Crossref Cited-by logo
QR Code