Sustainable urban mobility in Istanbul: A financial assessment of fuel cell hybrid-electric buses in the metrobus system

Keywords: Battery-Electric Bus Concept; Business Performance Monitoring; Cost Estimation, Enterprise Modelling, and Integration; Analysis of Fuel Cell Hybrid-Electric Bus Concept; Public Transportation


As cities grow and become more populous, the demand for public transportation increases due to a need for authorities to expand their transportation capacity. However, the increased use of vehicles can cause environmental impacts such as air pollution, greenhouse gas emissions, and noise. To address these issues, governments and other stakeholders seek alternative transportation systems or technologies. This paper intends to assess the financial viability of using fuel cell hybrid-electric buses as an alternative transportation system for the Istanbul Metrobus System. The analysis is based on the Payback Period Method, which evaluates the costs and benefits of a project over its lifetime. The study compares the total operating costs of using fuel cell hybrid-electric buses to diesel and battery-electric buses. The study determined that fuel cell hybrid-electric buses can lead to a reduction in total operating costs of 81.1% compared to diesel buses and 56.3% compared to battery-electric buses. This analysis suggests that fuel cell hybrid-electric buses offer added value after approximately 9 years. The outcome of this study is significant as it can help stakeholders take informed decisions about the financial viability of alternative transportation systems. Furthermore, the financial model or approach used in this study can be useful for understanding how public transportation systems can be funded in the future.


Ajanovic, A., Glatt, A., & Haas, R. (2021). Prospects and impediments for hydrogen fuel cell buses. Energy, 235, 121340.

Ally, J., & Pryor, T. (2016). Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus systems: An Australian case study. Energy Policy, 94, 285-294.

Al-Saadi, M., Mathes, M., Käsgen, J., Robert, K., Mayrock, M., Mierlo, J. V., & Berecibar, M. (2022). Optimization and Analysis of Electric Vehicle Operation with Fast-Charging Technologies. World Electric Vehicle Journal, 13(1), 20.

Baldino, C., O’Malley, J., Searle, S., & Christensen, A. (2021). Hydrogen for heating? Decarbonization options for households in Germany in 2050. International Council on Clean Transportation.

Ballard. (2023) Battery-Fuel Cell Hybrid Electric Buses Optimized Solutions for Zero-Emission Transit. (accessed 21.04.2023)

Ballard Power Systems. (2021). Case Study. Fuel Cell Zero-Emission Buses for Pau, France.

Barra González, J. (2020). Estrategia Nacional de Electromovilidad en el sector transporte de Chile (Doctoral dissertation, Universidad del Desarrollo. Facultad de Gobierno).

Berger, R., Ammermann, H., Ruf, Y., Lange, S., Fundulea, D., & Martin, A. (2015). Fuel Cell Electric Buses: Potential for Sustainable Public Transport in Europe. http://www.fch.europa. eu/sites/default/files/150909_FINAL_Bus_Study_Report_OUT_0.PDF.

Birol, F. (2021). Open letter to the International Energy Agency and its member countries: Please remove paywalls from global energy data and add appropriate open licenses.

Bonci, M. (2021). Fuel Cell Vehicle simulation: an approach based on Toyota Mirai (Doctoral dissertation, Politecnico di Torino).

Bonilla, O., & Merino, D. N. (2010). Economics of a hydrogen bus transportation system: case study using an after tax analysis model. Engineering Management Journal, 22(3), 34-44.

Broatch, A., Olmeda, P., Margot, X., & Aceros, S. (2023). Different strategies in an integrated thermal management system of a fuel cell electric bus under real driving cycles in winter. Energy Conversion and Management, 288, 117137.

California Air resources Board. (2019). Innovative Clean Transit (ICT) Regulation (2019). Regulation Fact Sheet. >(Accessed 02.04.2023).

Chang, C. C., Liao, Y. T., & Chang, Y. W. (2019). Life cycle assessment of alternative energy types–including hydrogen–for public city buses in Taiwan. International Journal of Hydrogen Energy, 44(33), 18472-18482.

Chang, C. T., Yang, C. H., & Lin, T. P. (2019). Carbon dioxide emissions evaluations and mitigations in the building and traffic sectors in Taichung metropolitan area, Taiwan. Journal of Cleaner Production, 230, 1241-1255.

China, D. (2020). Fueling the Future of Mobility. Hydrogen and fuel cell solutions for transportation, 1.

Clean Energy ministerial (2021). First ever global Mou on 100% zero-emission medium and heavy duty vehicules announced under evis drive to cero campaign.

Cockroft, C. J., & Owen, A. D. (2007). The economics of hydrogen fuel cell buses. Economic Record, 83(263), 359-370.

Collantes, G., & Sperling, D. (2008). The origin of California’s zero emission vehicle mandate. Transportation Research Part A: Policy and Practice, 42(10), 1302-1313.

Correa, G., Muñoz, P. M., & Rodriguez, C. R. (2019). A comparative energy and environmental analysis of a diesel, hybrid, hydrogen and electric urban bus. Energy, 187, 115906.

Correa, G., Muñoz, P., Falaguerra, T., & Rodriguez, C. R. (2017). Performance comparison of conventional, hybrid, hydrogen and electric urban buses using well to wheel analysis. Energy, 141, 537-549.

Decarbonization Plan Commitment of the Bicentennial Government (2018-2022). Descarbonicemos Costa Rica compromiso país.

Deliali, A., Chhan, D., Oliver, J., Sayess, R., Godri Pollitt, K. J., & Christofa, E. (2021). Transitioning to zero-emission bus fleets: state of practice of implementations in the United States. Transport Reviews, 41(2), 164-191.

Despaux L., (2019). La Station Hydrogène. Source D’énergie verte pour un territoire durable. Dosier de presse.

Díez, A., Velandia, E., Bohórquez, J. A., Restrepo, M., & Guggenberg, E. (2012). Reintroduction of trolleybuses in Colombia: An opportunity for the development of sustainable transport. In PICMET (Vol. 12, pp. 1125-31).

Difiglio, C., Güray, B. Ş., & Merdan, E. (2020). Turkey Energy Outlook 2020. Sabancı University Istanbul International Center for Energy and Climate. from:

Dincer, I., Eroğlu, İ., & Öztürk, M. (2021). Türkiye için hidrojen teknolojileri yol haritası. Hidrojen Teknolojileri Derneği Yayınları .

Energi-, Forsynings- og Klimaministeriet Stormgade (2018). København KSammen om en grønnere fremtid Klima- og lufudspil, 2-6 1470.

Eudy, L., & Post, M. (2014). Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Third Report (No. NREL/TP-5400-60527). National Renewable Energy Lab. (NREL), Golden, CO (United States).

Eudy, L., & Post, M. B. (2017). Fuel cell buses in us transit fleets: Current status 2017 (No. NREL/TP-5400-70075). National Renewable Energy Lab. (NREL), Golden, CO (United States).

Eudy, L., & Post, M. B. (2018). Zero-Emission Bus Evaluation Results: Orange County Transportation Authority Fuel Cell Electric Bus (No. NREL/TP-5400-72226). National Renewable Energy Lab. (NREL), Golden, CO (United States).

Eudy, L., & Post, M. B. (2020). Fuel cell buses in us transit fleets: Current status 2017 (No. NREL/TP-5400-70583). National Renewable Energy Lab. (NREL), Golden, CO (United States).

European Automobile Manufacturers’ Association (2020). Medium and Heavy Buses (Over 3.5T) New Registrations By Fuel Type In the European Union (2020).

Fuel cell Electric Buses. Fébus Project Brochure.

Federal Ministry for Climate Action, Environment, Energy, Mobility, Innovation and Technology (2021), Austria's 2030 Mobility Master Plan.

Friedlingstein, P., O'sullivan, M., Jones, M. W., Andrew, R. M., Hauck, J., Olsen, A., ... & Zaehle, S. (2020). Global carbon budget 2020. Earth System Science Data Discussions, 2020, 12, 3269–3340.

Fuel cell Electric Buses. Fébus Project Budget.

Gabsalikhova, L., Sadygova, G., & Almetova, Z. (2018). Activities to convert the public transport fleet to electric buses. Transportation research procedia, 36, 669-675.

Grütter, J. M., & Grütter Consulting, A. G. (2014). Real world performance of hybrid and electric buses. Renewable energy & energy efficiency promotion in international cooperation.

Guerra, C. F., Caparrós, M. J., Calderón, B. N., Carbonero, V. S., Gallego, E. N., Reyes-Bozo, L., ... & Vyhmeister, E. (2018). Viability analysis of centralized hydrogen generation plant for use in mobility sector. International Journal of Hydrogen Energy, 43(26), 11793-11802.Available from:

He, Y., Song, Z., & Liu, Z. (2019). Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities and Society, 48, 101530.

Hua, T., Ahluwalia, R., Eudy, L., Singer, G., Jermer, B., Asselin-Miller, N., ... & Marcinkoski, J. (2014). Status of hydrogen fuel cell electric buses worldwide. Journal of Power Sources, 269, 975-993.

İETT İETT 2021-2025 yılı Stratejik Planı. (s. f.) İETT 2021-2025 yılı Stratejik Planı. (s. f.).

İETT İşletmeleri Genel Müdürlüğü.(2022). Performans Programı.

International Energy Agency (2021). Hydrogen is an increasingly important piece of the net zero emissions by 2050 puzzle. (Accessed 10.05.2023).

International Energy Agency. (2021) Greenhouse Gas Emissions from Energy data Explorer.>(Accessed 04.04.2023).

Kim, H., Hartmann, N., Zeller, M., Luise, R., & Soylu, T. (2021). Comparative tco analysis of battery electric and hydrogen fuel cell buses for public transport system in small to midsize cities. Energies, 14(14), 4384.

Kotze, R., Brent, A. C., Musango, J., de Kock, I., & Malczynski, L. A. (2021). Investigating the Investments Required to Transition New Zealand’s Heavy-Duty Vehicles to Hydrogen. Energies, 14(6), 1646.

Kozlov, A. V., Porsin, A. V., Dobrovol’skii, Y. A., Kashin, A. M., Terenchenko, A. S., Gorin, M. A., ... & Milov, K. V. (2021). Life Cycle Assesment of Powertrains Based on a Battery, Hydrogen Fuel Cells, and Internal Combustion Engine for Urban Buses under the Conditions of Moscow Oblast. Russian Journal of Applied Chemistry, 94(6), 793-812.

Kudryavtseva, O. V., Baraboshkina, A. V., & Nadenenko, A. K. (2021). Sustainable low-carbon development of urban public transport: International and Russia’s experience. Журнал Сибирского федерального университета. Гуманитарные науки, 14(12), 1795-1807.

Laib, F., Braun, A., & Rid, W. (2019). Modelling noise reductions using electric buses in urban traffic. A case study from Stuttgart, Germany. Transportation Research Procedia, 37, 377-384.

Lee, J. Y., Cha, K. H., Lim, T. W., & Hur, T. (2011). Eco-efficiency of H2 and fuel cell buses. International journal of hydrogen energy, 36(2), 1754-1765.

Lian, J., Han, P., Li, L., & Sun, X. Real‐time energy management strategy for fuel cell plug‐in hybrid electric bus using short‐term power smoothing prediction and distance adaptive state‐of‐charge consumption. Energy Technology.

Logan, K. G., Nelson, J. D., & Hastings, A. (2020). Electric and hydrogen buses: Shifting from conventionally fuelled cars in the UK. Transportation Research Part D: Transport and Environment, 85, 102350.

Lucie KEMPF, Chef de Project Fébus, Investment Transport Collective, personal communication, 22 March 2022.

Melo, P., Ribau, J., & Silva, C. (2014). Urban bus fleet conversion to hybrid fuel cell optimal powertrains. Procedia-social and behavioral sciences, 111, 692-701. Available from:

Mendez, C., Contestabile, M., & Bicer, Y. (2023). Hydrogen fuel cell vehicles as a sustainable transportation solution in Qatar and the Gulf cooperation council: a review. International Journal of Hydrogen Energy.

Moreno, B., & García-Álvarez, M. T. (2018). Measuring the progress towards a resource-efficient European Union under the Europe 2020 strategy. Journal of Cleaner Production, 170, 991-1005.

Mulley, C., Ho, C., Balbontin, C., Hensher, D., Stevens, L., Nelson, J. D., & Wright, S. (2020). Mobility as a service in community transport in Australia: Can it provide a sustainable future?. Transportation Research Part A: Policy and Practice, 131, 107-122.

Navas-Anguita, Z., García-Gusano, D., Dufour, J., & Iribarren, D. (2020). Prospective techno-economic and environmental assessment of a national hydrogen production mix for road transport. Applied Energy, 259, 114121.

Netherlands Enterprise Agency (2019). Mission Zero Powered by Holland.

Official Gazette of the Presidency of the Republic of Türkiye, 17 December 2021 and 31692 Numbered, Ministry of Labor and Social Security, Minimum Wage Determination Commission Decision.,benzeri%20ba%C5%9Fkaca%20bir%20%C3%B6deme%20yap%C4%B1lmamaktad%C4%B1r.

Olabi, A. G., Onumaegbu, C., Wilberforce, T., Ramadan, M., Abdelkareem, M. A., & Al–Alami, A. H. (2021). Critical review of energy storage systems. Energy, 214, 118987.

Pawelec, G., Muron, M., Bracht, J., Bonnet-Cantalloube, B., Floristean, A., & Brahy, N. (2020). Clean hydrogen monitor.

Pederzoli, D. W., Carnevali, C., Genova, R., Mazzucchelli, M., Del Borghi, A., Gallo, M., & Moreschi, L. (2022). Life cycle assessment of hydrogen-powered city buses in the High V. LO-City project: integrating vehicle operation and refuelling infrastructure. SN Applied Sciences, 4(2), 57.

Public Procurement Authority. (2021). EKAP Information Page. 2021/389857 (tender registration number). (accessed on 18 April 2022 ).

Public Procurement Authority. (2017). EKAP Information Page. 2017/111661 (tender registration number). (accessed on 18 April 2022 ).

Public Procurement Authority. (2016). EKAP Information Page.2016/558338 (tender registration number). (accessed on 18 April 2022 ).

Ritari, A., Huotari, J., Halme, J., & Tammi, K. (2020). Hybrid electric topology for short sea ships with high auxiliary power availability requirement. Energy, 190, 116359.

Rodrigues, A. L., & Seixas, S. R. (2022). Battery-electric buses and their implementation barriers: Analysis and prospects for sustainability. Sustainable Energy Technologies and Assessments, 51, 101896.

Saltzstein, S. J., Hanson, B., & Freeze, G. A. (2020). Spent Fuel and Waste Science and Technology Storage and Transportation R&D Strategic Plan (No. SAND2020-11667C). Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

Santarelli, M. G., Torchio, M. F., & Cochis, P. (2006). Parameters estimation of a PEM fuel cell polarization curve and analysis of their behavior with temperature. Journal of Power Sources, 159(2), 824-835.

Scarabottolo, O. (2023). Results from Models of Economic Hydrogen Refuelling Infrastructure (MEHRLIN) project to support the future of hydrogen in transportébus-Dossier%20Press%20Station%20H2.pdf

Sen, A., & Miller, J. (2022). Emissions reduction benefits of a faster, global transition to zeroemission vehicles. Working Paper, (2022-15).

Sokolsky, S., Tomic, J., & Gallo, J. B. (2016). Best practices in hydrogen fueling and maintenance facilities for transit agencies. World Electric Vehicle Journal, 8(2), 553-556.

Solaris Group (2022). Urbino Hydrogen Bus Technical Brochure.

Stolzenburg, K., Whitehouse, N., & Whitehouse, S. (2020). JIVE-Best Practice and Commercialisation Report 2. JIVE 2-Best Practice Information Bank.

The Organisation for Economic Co-operation and Development (2020) Air and GHG emissions Datas.>(Accessed 12.06.2023).

Topal, O. (2017). Electric bus concept against to diesel and CNG bus for public transport operations. In 2017 5th international istanbul smart grid and cities congress and fair (ICSG) (pp. 105-109). IEEE.

Topal, O. (2021). İstanbul Lastik Tekerlekli Toplu Ulaşım Sistemlerindeki Özel Halk Otobüsleri için Elektrikli Otobüs Konsepti. Avrupa Bilim ve Teknoloji Dergisi, (31), 968-973.

Topal, O. (2022), Electric Bus Concept on Innovative Garage Operating Model for Public. Istambul Commerce University Journal of Science. 43(22). 138-151.

Topal, O. (2023). A novel on the retrofit from CNG buses to electric buses for rubber-tyred wheeled public transportation systems. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 237(7), 1738-1750.

Topal, O., & Ateş, Y. (2021). Innovative Financial Approaches for Procurement on Electric Buses in Sustainable Public Transportation Systems. In 2021 10th International Conference on Power Science and Engineering (ICPSE) (pp. 41-49). IEEE.

Topal, O., & Nakir, İ. (2018). Total cost of ownership based economic analysis of diesel, CNG and electric bus concepts for the public transport in Istanbul City. Energies, 11(9), 2369.

UITP Union Internationale des Transports Publics Statistics Brief Global bus survey (2019).

Undertaking, H. J. (2012). Urban Buses: Alternative Powertrains for Europe: A Fact-based Analysis of the Role of Diesel Hybrid, Hydrogen Fuel Cell, Trolley and Battery Electric Powertrains.

Van de Kaa, G., Scholten, D., Rezaei, J., & Milchram, C. (2017). The battle between battery and fuel cell powered electric vehicles: A BWM approach. Energies, 10(11), 1707.

Wu, Y., Liu, F., He, J., Wu, M., & Ke, Y. (2021). Obstacle identification, analysis and solutions of hydrogen fuel cell vehicles for application in China under the carbon neutrality target. Energy Policy, 159, 112643.

How to Cite
Topal, O. (2023). Sustainable urban mobility in Istanbul: A financial assessment of fuel cell hybrid-electric buses in the metrobus system. CT&F - Ciencia, Tecnología Y Futuro, 13(1), 15–30.


Download data is not yet available.
Scientific and Technological Research Articles


Crossref Cited-by logo
QR Code