A comparative study of a trans-critical carbon dioxide cycle powered by a single flash geothermal cycle with/without economizer operating modes

Keywords: Single flash geothermal, trans-critical CO2, Economizer, Energy analyses, Exergy analyses

Abstract

Renewable energy, particularly geothermal energy, is on the rise globally. It has been demonstrated that recovering heat lost during geothermal cycles is essential due to the inefficiency of these cycles. This paper pproposes a combined power generation cycle using EES software to model a single-flash geothermal cycle, and a trans-critical carbon dioxide cycle. The study compares the system's performance during its "Without Economizer" and "With Economizer" operational stages. The impact of the economizer on the system's output metrics, including the net power output, energy efficiency, and exergy efficiency, was examined. The results show that the "With Economizer" system's net power output increased from 451.3 kW to 454 kW. The energy efficiency difference between the two systems is based on the first law of thermodynamics, where the value ofthe "Without Economizer" system is 6.036%, and the "With Economizer" system is 6.075%. The system without an economizer had an exergy efficiency value of 26.26%, whereas the system with an economizer reached 26.43%, based on the second law of thermodynamics. Installing the economizer increased the total economic cost rate of the system from 0.225M$/Year to 0.2294M$/Year, which increased the product cost rate from 15.82$/GJ to 16.02$/GJ.

References

Aali, A., Pourmahmoud, N., & Zare, V. (2017). Exergoeconomic analysis and multi-objective optimization of a novel combined flash-binary cycle for Sabalan geothermal power plant in Iran. Energy Conversion and Management, 143, 377-390. https://doi.org/https://doi.org/10.1016/j.enconman.2017.04.025

Baghernejad, A., & Yaghoubi, M. (2011). Exergoeconomic analysis and optimization of an Integrated Solar Combined Cycle System (ISCCS) using genetic algorithm. Energy Conversion and Management, 52(5), 2193-2203. https://doi.org/https://doi.org/10.1016/j.enconman.2010.12.019

Başoğul, Y., Güler, O. V., & Keçebaş, A. (2021). Chapter 8 - Binary geothermal power plant. In Thermodynamic Analysis and Optimization of Geothermal Power Plants (pp. 113-129).Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821037-6.00013-5

Bejan, A., Tsatsaronis, G., & Moran, M. J. (1995). Thermal design and optimization. John Wiley & Sons. http://www3.ub.tu-berlin.de/ihv/000278235.pdf

Cao, Y., Elmasry, Y., Abed, A. M., Singh, P. K., Aouaini, F., Bouzgarrou, S. M., ... & Galal, A. M. (2022). Study and multi-objective optimization of integrating an energetic solar thermal application, a supercritical process, and a high-temperature electrolyser. Case Studies in Thermal Engineering, 40, 102530. https://doi.org/https://doi.org/10.1016/j.csite.2022.102530

Chen, L., Wang, Y., Xie, M., Ye, K., & Mohtaram, S. (2021). Energy and exergy analysis of two modified adiabatic compressed air energy storage (A-CAES) system for cogeneration of power and cooling on the base of volatile fluid. Journal of Energy Storage, 42, 103009. https://doi.org/https://doi.org/10.1016/j.est.2021.103009

El Haj Assad, M., Aryanfar, Y., Javaherian, A., Khosravi, A., Aghaei, K., Hosseinzadeh, S., ... & Mahmoudi, S. M. S. (2021). Energy, exergy, economic and exergoenvironmental analyses of transcritical CO2 cycle powered by single flash geothermal power plant. International Journal of Low-Carbon Technologies, 16(4), 1504-1518. https://doi.org/10.1093/ijlct/ctab076

Gürbüz Yağız, E., Güler, O. V., & Keçebaş, A. (2022). Environmental impact assessment of a real geothermal driven power plant with two-stage ORC using enhanced exergo-environmental analysis. Renewable Energy, 185, 1110-1123. https://doi.org/https://doi.org/10.1016/j.renene.2021.12.097

Hoseinzadeh, S., Yargholi, R., Kariman, H., & Heyns, P. S. (2020). Exergoeconomic analysis and optimization of reverse osmosis desalination integrated with geothermal energy [https://doi.org/10.1002/ep.13405]. Environmental Progress & Sustainable Energy, 39(5), e13405. https://doi.org/https://doi.org/10.1002/ep.13405

Jiang, P. X., Zhang, F. Z., & Xu, R. N. (2017).. Thermodynamic analysis of a solar–enhanced geothermal hybrid power plant using CO2 as working fluid. Applied Thermal Engineering, 116, 463-472. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2016.12.086

Karki, A. B. (2009). Biogas as renewable energy from organic waste. Biotechnology, 10, 1-9. https://www.eolss.net/Sample-Chapters/C17/E6-58-09-10.pdf

Kurchania, A. (2012). Biomass energy. In Biomass Conversion: the interface of biotechnology, chemistry and materials science (pp. 91-122). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28418-2_2

Liu, F., Kang, Y., Hu, Y., Chen, H., Wang, X., Pan, H., & Xie, J. (2022). Comparative investigation on the heat extraction performance of an enhanced geothermal system with N2O, CO2 and H2O as working fluids. Applied Thermal Engineering, 200, 117594. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.117594

Liu, X., Yu, K., Wan, X., Zheng, M., & Li, X. (2021). Conventional and advanced exergy analyses of transcritical CO2 ejector refrigeration system equipped with thermoelectric subcooler. Energy Reports, 7, 1765-1779. https://doi.org/https://doi.org/10.1016/j.egyr.2021.03.023

Liu, Y., Zhao, Y., Yang, Q., Liu, G., & Li, L. (2020). Thermodynamic comparison of CO2 power cycles and their compression processes. Case Studies in Thermal Engineering, 21, 100712. https://doi.org/https://doi.org/10.1016/j.csite.2020.100712

Mahmoudan, A., Esmaeilion, F., Hoseinzadeh, S., Soltani, M., Ahmadi, P., & Rosen, M. (2022). A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization. Applied Energy, 308, 118399. https://doi.org/https://doi.org/10.1016/j.apenergy.2021.118399

Melzi, B., Kefif, N., Assad, M. E. H., Delnava, H., & Hamid, A. (2021). Modelling and Optimal Design of Hybrid Power System Photovoltaic/Solid Oxide Fuel Cell for a Mediterranean City. Energy Engineering, 118(6), 1767-1781. https://doi.org/10.32604/EE.2021.017270

Mohtaram, S., Sun, Y., Omidi, M., & Lin, J. (2021). Energy-exergy efficiencies analyses of a waste-to-power generation system combined with an ammonia-water dilution Rankine cycle. Case Studies in Thermal Engineering, 25, 100909. https://doi.org/https://doi.org/10.1016/j.csite.2021.100909

Mosaffa, A. H., Mokarram, N. H., & Farshi, L. G. (2017). Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy. Geothermics, 65, 113-125. https://doi.org/https://doi.org/10.1016/j.geothermics.2016.09.004

Nordin, N. (2010, June). Limitations of Commercializing Fuel Cell Technologies. In AIP Conference Proceedings (Vol. 1225, No. 1, pp. 498-506). American Institute of Physics. https://doi.org/10.1063/1.3464897

Pambudi, N. A., Wibowo, S., Ranto, & Saw, L. H. (2021). Experimental Investigation of Organic Rankine Cycle (ORC) for Low Temperature Geothermal Fluid: Effect of Pump Rotation and R-134 Working Fluid in Scroll-Expander. Energy Engineering, 118(5). https://doi.org/10.32604/EE.2021.016642

Parikhani, T., Delpisheh, M., Haghghi, M. A., Holagh, S. G., & Athari, H. (2021). Performance enhancement and multi-objective optimization of a double-flash binary geothermal power plant. Energy Nexus, 2, 100012. https://doi.org/https://doi.org/10.1016/j.nexus.2021.100012

Saengsikhiao, P., Taweekun, J., Maliwan, K., Sae-ung, S., & Theppaya, T. (2021). Development of Environmentally Friendly and Energy Efficient Refrigerants for Refrigeration Systems. Energy Engineering, 118(2), 411-433. https://doi.org/10.32604/EE.2021.012860

Sahana, C., De, S., & Mondal, S. (2021). Integration of CO2 power and refrigeration cycles with a desalination unit to recover geothermal heat in an oilfield. Applied Thermal Engineering, 189, 116744. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2021.116744

Sun, H., Dong, Q., Zhang, C., & Chen, J. (2020). An Energy Efficiency Improvement Method for Manufacturing Process Based on ECRSR. Energy Engineering, 117(3), 153-164. https://doi.org/10.32604/EE.2020.010706

Wang, J., Wang, J., Dai, Y., & Zhao, P. (2015). Thermodynamic analysis and optimization of a flash-binary geothermal power generation system. Geothermics, 55, 69-77. https://doi.org/https://doi.org/10.1016/j.geothermics.2015.01.012

Wang, X., Levy, E. K., Pan, C., Romero, C. E., Banerjee, A., Rubio-Maya, C., & Pan, L. (2019). Working fluid selection for organic Rankine cycle power generation using hot produced supercritical CO2 from a geothermal reservoir. Applied Thermal Engineering, 149, 1287-1304. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2018.12.112

Xu, G., Liang, F., Yang, Y., Hu, Y., Zhang, K., & Liu, W. (2014). An Improved CO2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory. Energies, 7(5), 3484-3502. https://doi.org/10.3390/en7053484

Yargholi, R., Kariman, H., Hoseinzadeh, S., Bidi, M., & Naseri, A. (2020). Modeling and advanced exergy analysis of integrated reverse osmosis desalination with geothermal energy. Water Supply, 20(3), 984-996. https://doi.org/10.2166/ws.2020.021

Yazarlou, T., & Saghafi, M. D. (2021). Investigation of Plans Shape and Glazing Percentage for the Energy Efficiency of Residential Buildings. Energy Engineering, 118(6). https://doi.org/10.32604/EE.2021.017282

Zobaa, A. F., & Bansal, R. C. (Eds.). (2011). Handbook of renewable energy technology. World Scientific. https://doi.org/10.1142/7489

How to Cite
Aryanfar, Y., García Alcaraz, J. L., Blanco Fernandez, J., Burgos Espinoza , I. I., & Márquez Figueroa, L. J. (2023). A comparative study of a trans-critical carbon dioxide cycle powered by a single flash geothermal cycle with/without economizer operating modes . CT&F - Ciencia, Tecnología Y Futuro, 13(1), 5–13. https://doi.org/10.29047/01225383.661

Downloads

Download data is not yet available.
Published
2023-12-31
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code