Comparison of combustion properties of simulated biogas and methane

  • Carlos Díaz González Universidad de Antioquia, Faculty of Engineering. Medellín, Colombia . Member of the Gas Science and Technology and Rational Use of Energy Team (GASURE)
  • Andrés Amell Arrieta Faculty of Engineering. Universidad de Antioquia, Medellín, Colombia . Coordinator of the Gas Science and Technology and Rational Use of Energy Team (GASURE)
  • José Luis Suárez Faculty of Engineering. Universidad de Antioquia, Medellín, Colombia . Member of the Gas Science and Technology and Rational Use of Energy Team (GASURE)
Keywords: biogas, combustion properties, premixed flame

Abstract

The utilization of new renewable energy sources has been of special interest during the past years, seeking to decrease our dependence on fossil fuels and the corresponding environmental impact derived from their use.  The combustion properties of a simulated gas composed of 60% methane and 40% carbon dioxide in volume are determined in this paper by means of calculation algorithms developed by the GASURE team, comparing them to pure methane properties. Furthermore, the effect of these properties on premixed flame characteristic phenomena is demonstrated. These properties were determined by theoretical estimations. The characteristic phenomena (laminar deflagration velocity, flame structure, radiation pattern) are determined experimentally. Results show a high effect of carbon dioxide in the combustion properties and characteristic parameters of a biogas premixed flame such as laminar deflagration velocity, flame structure and gas-methane exchangeability problems. The difference regarding flame structure and combustion properties lead to a difference in radiation pattern of the gases studied.

References

Amell, A. (2001). CombuGas V 2.0. Calculation software. Gas Science and Technology and Rational Use of Energy Team. Universidad de Antioquia. Facultad de ingeniería.

Amell, A. (2001). IsoGas V 1.0. Calculation software. Gas Science and Technology and Rational Use of Energy Team. Universidad de Antioquia. Facultad de ingeniería.

Amell, A. (2002). Estimación de las propiedades de combustión de combustibles gaseosos. Universidad de Antioquia. Facultad de ingeniería. Centro de Extensión Académica CESET. Medellín. 76 p.

Amell, A., García, J. M., Quilindo, A. & Henao, D. A. (2004) Influencia de la altitud sobre la velocidad de deflagración del gas natural. Revista Facultad de Ingeniería Universidad de Antioquia. 32: 72-81.

Amell, A. (2007). Influence of altitude on the height of blue cone in a premixed flame. Applied Thermal Engineering, 27 (2-3), 408-412.

https://doi.org/10.1016/j.applthermaleng.2006.07.013

Baukal, C. (2000). Heat Transfer in Industrial Combustion. USA : CRC Press. 65-108; 195-206. https://doi.org/10.1201/9781420039757

Baukal, C. & Gebhart, B. (1997). Oxygen-enhanced/natural gas flame radiation.Inf. J. Heat Mass Transfer, 40: 2539-2547 Elsevier Science Inc..

https://doi.org/10.1016/S0017-9310(96)00307-9

Bradley, D., Gaskell, P. H. & Gu, X. J. (1996). Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study. Combustion and Flame, 104: 176-198 Elsevier Science Inc. https://doi.org/10.1016/0010-2180(95)00115-8

Desideri, U., Di Maria, F., Leonardo, D. & Proietti, S. (2003). Sanitary landfill energetic potential analysis: a real case study. Energy Conversion and Management, 44:1969-1981. Elsevier Science Inc. https://doi.org/10.1016/S0196-8904(02)00224-8

Glassman, I. (1996). Combustion. (3a ed.) USA : Academic Press. 119-181. https://doi.org/10.1016/B978-012285852-9/50005-9

Gu, X. J., Haq, M. Z., Lawes, M. & Woolley, R. (2000). Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures. Combustion and Flame, 121:41-58. Elsevier Science Inc. https://doi.org/10.1016/S0010-2180(99)00142-X

Ilbasa, M., Crayfordb, A.P., Yilmaza, I., Bowenb, P.J. & Syredb, N. (2006). Laminar-burning velocities of hydrogen-air and hydrogen-methane-air mixtures: An experimental study. Int. J. of Hydrogen Energy, 31: 1768-1779. Elsevier Science Inc. https://doi.org/10.1016/j.ijhydene.2005.12.007

ISO 6976: (1995). Natural gas - Calculation of calorific values, density, relative density and Wobbe index from composition.

Kuo, H. (1986). Principles of combustion. USA : Wiley-Interscience Publication. 285-332.

Lafay, Y., Cabot, G. & Boukhalfa, A. (2006). Experimental study of biogas combustion in a gas turbine configuration. 13th Int. Symp. On Appl. Laser Techniques to Fluid Mechanics. Lisbon, Portugal . 35.5.

Lee, C. E., Oh, C. B., Jung, I. K. & Park, J. (2002). A study on the determination of burning velocities of LFG and LFG-mixed fuels. Fuel, 81: 1679-1686. Elsevier Science Inc. https://doi.org/10.1016/S0016-2361(02)00049-2

Lee, C. E., & Hwang, C. H. (2007). An experimental study on the flame stability of LFG and LFG-mixed fuels. Fuel, 86: 649-655. Elsevier Science Inc.

https://doi.org/10.1016/j.fuel.2006.08.033

Lewis, B. & Elbe, G. (1987). Combustion, Flames and Explosions of Gases. (3a ed.) USA : Academic Press. 215-414. https://doi.org/10.1016/B978-0-12-446751-4.50011-1

Qin, W., Egolfopoulos, F. N. & Tsotsis, T. T. (2001). Fundamental and environmental aspects of landfill gas utilization for power generation. Chem. Eng. J, 82.: 157-172. Elsevier Science Inc. https://doi.org/10.1016/S1385-8947(00)00366-1

The society of motor manufacturers and traders limited SMMT. (2002). Towards a shared vision - Future fuels and sustainable mobility, Londres. 84 p.

Turns, S. (2000). An Introduction to Combustion. (2a ed.) USA : McGraw-Hill. 253-299.

Zamorano, M., Perez, J., Aguilar, I. & Ridao, A. (2007) Study of Energy potential of the Biogas produced by an urban waste landfill in southern Spain. Renewable & Sustainable Energy Reviews, 11(5): 909-922. Elsevier Science Inc. https://doi.org/10.1016/j.rser.2005.05.007

How to Cite
González, C. D., Arrieta, A. A., & Suárez, J. L. (2009). Comparison of combustion properties of simulated biogas and methane. CT&F - Ciencia, Tecnología Y Futuro, 3(5), 225–236. https://doi.org/10.29047/01225383.459

Downloads

Download data is not yet available.
Published
2009-12-31
Section
Scientific and Technological Research Articles

Altmetric

QR Code