Effect of pitch petroleum oxidation on mesophase production

  • Juan-Manuel Barraza-Burgos Universidad del Valle
Keywords: Pitch, Oxidation, Asphalt, Characterization, Precursor, Carbonization.


This study used two Colombian petroleum pitches (an asphalt and a precipitate) to determine their capacity as precursor of carbonaceous materials. In order to obtain the mesophase, pitches were oxidized at temperature of 350°C and oxidation times of 2; 3 and 5 hours. Oxidized pitches were fractioned with toluene using a ratio of 20 mL Toluene/g of oxidized bitumen. Insoluble material in Toluene (IT) and Tetrahydrofurane (ITHF) were carbonized with nitrogen at 400°C. For the identification of the mesophase, specimens were fabricated with the material obtained from carbonization. For the quantification of the mesophase, a microscope with polarized light filter was used. A total of 500 points were counted. The results showed that the asphalt treated with the longest oxidation time, contained higher concentration of mesophase. By contrast, the precipitate treated with the shortest oxidation time produced higher concentration of mesophase.


Barraza, J., Camargo, R., Bermúdez, V. & Velasco, F. (2009). Análisis termogravimétrico de concentrados resinoasfalténicos procedentes de crudos colombianos. VIII Congreso colombiano de carbón y energías alternativas, Universidad Nacional, Bogotá.

de López, H. (1990). Modificación de brea de mesofase. Colombiana de Química, 19 (1), 115-122.

Diefendorf, R. & Riggs, D. (1980). U.S. Patent Num. 4,208,267. Forming optically anisotropic pitches.

Kanno, K., Yoon, K., Fernández, J., Mochida, I., Fortin, F. & Korai, Y. (1994). Effects of carbon black addition on he carbonization of mesophase pitch. Carbon, 32 (5),801-807.
Machnikowski, J., Machnikowska, H., Brzozowska, T. &Zieliński, J. (2002). Mesophase development in coal-tar pitch modified with various polymers. J. Anal. Appl. Pyr., 65 (2), 147-160.

McHenry, E. (1995). Coal-tar /petro industrial pitches. Light Metals: Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania), 543-548.

Mochida, I., Kudo, K., Fukuda, N., Takeshita, K. & Takahashi, R. (1975a). Carbonization of pitches—IV: Carbonization of polycyclic aromatic hydrocarbons under the presence of aluminum chloride catalyst. Carbon, 13 (2), 135-139.

Mochida, I., Nakamura, E., Maeda, K. & Takeshita, K. (1975b). Carbonization of aromatic hydrocarbons—III:
Carbonization catalyzed by alkali metals. Carbon, 13 (6), 489-493.

Mora, E., Santamaría, R., Blanco, C., Granda, M. & Menéndez, R. (2003). Mesophase development in petroleum and coal-tar pitches and their blends. J. Anal. Appl. Pyr., 68-69: 409-424.

Oh, S. & Park, Y. (1999). Comparative studies of the modification of coal-tar pitch. Fuel, 78 (15), 1859–1865.

Ozel, M. & Bartle, K. (2002). Production of mesophase pitch from coal tar and petroleum pitches using supercritical fluid extraction. Turk. J. Chem., 26 (3), 417-424.

Pérez, M., Granda, M., Santamaría, R. & Menéndez, R. (2003). Preventing mesophase growth in petroleum
pitches addition of coal-tar pitch [2]. Carbon, 41 (9), 1854-1857.

Rincón, J., Carvajal, R. & Pacheco, L. (1985). Measurement of anisotropic development in a low-rank coal using e.s.r. spectroscopy and optical texture. Fuel, 64 (1), 119-122.

Verkoczy, B. (1993). Factors affecting coking in heavy oil cores, oils and SARA fractions under thermal stress. J. Canadian Petrochemical Tech., 32 (7), 25-33.

Srivastava, M., Singh, R., Manoj, K., Agarwal, U. & Garg, M. (2008). Influence of oxidative and non-oxidative
conditions on petroleum pitch properties. J. Scientific & Industrial Research, 67: 616-621.
How to Cite
Barraza-Burgos, J.-M. (2012). Effect of pitch petroleum oxidation on mesophase production. CT&F - Ciencia, Tecnología Y Futuro, 4(5), 33-42. https://doi.org/10.29047/01225383.220


Download data is not yet available.
Scientific and Technological Research Articles