Petroleum sulfonates preparation and evaluation for chemical enhanced oil recovery in Colombian oil fields

  • Zarith del Pilar Pachón Contreras Ecopetrol S.A.
  • Fernando Andrés Rojas Ruíz UT Pexlab
  • Miguel José Rondón Antón UT Pexlab
  • Juliana Carolina Vidal Prada UT Pexlab
  • Freddy Alexander Pulido Solano UT Pexlab
Keywords: Surfactants, Sulfonation, Chemical synthesis, Sulfonation reaction, Enhanced oil recovery, Characterization, Infrared spectroscopy, UV spectroscopy


An efficient method for preparing petroleum sulfonates is described in this article. Petroleum sulfonates were prepared from five different refinery cuts and characterized by infrarred and ultra-violet spectroscopy. Their hydrophilic-lipophilic relative afinity was assessed by performing phase behavior scans. The prepared surfactants were evaluated in formulations for Chemical Enhanced Oil Recovery (CEOR), showing that, under the evaluation conditions, the solubilization ratios increase with the structural similarity between the crude oil and the surfactant molecules. It was confirmed that, when used as secondary surfactants, the petroleum sulfonates here prepared allow to achieve relatively high solubilization parameters.


Almalik, M. S., Attia, A. M. & Jang, L. K. (1997). Effects of alkaline flooding on the recovery of Safaniya crude oil of Saudi Arabia. J. Petrol. Sci. Eng., 17(3-4), 367-372.

ASTM D287-12b. Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method). Annual Book of ASTM Standards, Vol. 05.01, ASTM International, West Conshohocken, PA, 2012.

ASTM D611-12. Standard Test Methods for Aniline Point and Mixed Aniline Point of Petroleum Products and Hydrocarbon Solvents. Annual Book of ASTM Standards, Vol. 05.01, ASTM International, West Conshohocken, PA, 2012.

ASTM D664-11a. Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. Annual Book of ASTM Standards, Vol. 05.01, ASTM International, West Conshohocken, PA, 2011.

ASTM D2007-11. Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method. Annual Book of ASTM Standards, Vol. 05.01, ASTM International, West Conshohocken, PA, 2011.

ASTM D4294-10. Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry. Annual Book of ASTM Standards, Vol. 05.02, ASTM International, West Conshohocken, PA, 2010.

ASTM D4052-11. Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. Annual Book of ASTM Standards, Vol. 05.02, ASTM International, West Conshohocken, PA, 2011.

ASTM D5307-97(2007), Standard Test Method for Determination of Boiling Range Distribution of Crude Petroleum by Gas Chromatography (Withdrawn 2011). Annual Book of ASTM Standards Replaced by D7169. ASTM International, West Conshohocken, PA, 2007.

Babadagli, T., Al-Bemani, A., Boukadi, F. & Al-Maamari, R. A. (2005). A laboratory feasibility study of dilute surfactant injection for the Yibal field, Oman. J. Petrol. Sci. Eng., 48(1-2), 37-52.

Babadagli, T. & Boluk, Y. (2005). Oil recovery performances of surfactant solutions by capillary imbibition. J. Colloid Interface Sci., 282(1), 162-175.

Basu, S. & Shravan, S. (2008). Preparation and characterization of petroleum sulfonate directly from crude. Pet. Sci. Technol., 26(13), 1559-1570.

Bourrel, M., Graciaa, A., Schechter, R. S. & Wade, W. H. (1979). The relation of emulsion stability to phase behavior and interfacial tension of surfactant systems. J. Colloid Interf. Sci., 72(1), 161-163.

Carmona, I., Schechter, R. S., Wade, W. H. & Weerasooriya, U. (1985). Ethoxylated oleyl sulfonates as model compounds for enhanced oil recovery. SPE Journal, 25(3), 351-357.

Comelles, F., Sánchez-Leal, J. & González, J. J. (2007). Soy oil microemulsions made of anionic surfactant, oleic acid, diethyleneglycol ethyl ether, and water: Optimized systems. J. Dispersion Sci. Technol., 28(8), 1218-1222.

Cross, J. (1998). Anionic surfactants. Analytical chemistry. Surfactant Science Series, Vol. 73, 2nd Ed. New York: Marcel Dekker Inc.

Djedri, S., Issaadi, R., Le Cerf, D., Picton, L. & Moulai- Mostefa, N. (2010). Surfactants synthesis using petroleum fractions and crude oil: Application in microemulsion formulation. J. Dispersion Sci. Technol., 31(7), 877-882.

El-Batanoney, M., Abdel-Moghny, T. & Ramzi, M. (1999). The effect of mixed surfactants on enhancing oil recovery. J. Surfact. Detergents, 2(2), 201-205.

Gregersen, C. S., Kazempour, M. & Alvarado, V. (2013). ASP design for the Minnelusa formation under low-salinity conditions: Impacts of anhydrite on ASP performance. Fuel, 105: 368-382.

Harban, A. A. & Johnson, C. E. (1963). Enciclopedia de tecnología química. 1th ed. México D.F.: UTEHA.

Huh, C. (1979). Interfacial tension and solubilizing ability of a microemulsion phase that coexists with oil and brine. J. Colloid Interface Sci., 71(2), 408-428.

Iglauer, S., Wu, Y., Shuler, P., Tang, Y. & Goddard III,W. A. (2010). New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential. J. Petrol. Sci. Eng., 71(1-2), 23-29.

Jamaloei, B. Y. (2009). Insight into the chemistry of surfactant-based enhanced oil recovery processes. Recent Patents on Chem. Eng., 2(1), 1-10.

Lee, S. & Puttnam, N. A. (1967). Rapid desulfonation of alkylbenzene sulfonates. J. Am. Oil Chem. Soc., 44(2), 158-159.

Levitt, D., Jackson, A., Heinson, C., Britton, L. N., Malik, T., Dwarakanath, V. & Pope, G. A. (2009). Identification and evaluation of high-performance EOR surfactants. SPE Reservoir Evaluation & Engineering, 12(2), 243-253.

Liu, Q., Dong, M., Yue, X. & Hou, J. (2006). Synergy of alkali and surfactant in emulsification of heavy oil in brine. Colloids Surf. A: Physicochem. Eng. Aspects., 273(1-3), 219-228.

Meléndez, L. V., Lache, A., Orrego-Ruíz, J. A., Pachón, Z. & Mejía-Ospino, E. (2012). Prediction of the SARA analysis of Colombian crude oils using ATR-FTIR spectroscopy and chemometric methods. J. Petrol. Sci. Eng., 90-91: 56-60.

Melrose, J. C. & Brandner, C. F. (1974). Role of capillary forces in detennining microscopic displacement efficiency for oil recovery by waterflooding. J. Can. Petrol. Technol., 13(4), 54-59.

Nazar, M. F., Shah, S. S. & Khosa, M. A. (2011). Microemulsions in enhanced oil recovery: A review. Petrol. Sci. Technol., 29(13), 1353-1365.

Salager, J. L. (1977). Physico-chemical properties of surfactant-water-oils mixtures: Phases behavior, microemulsion formation and interfacial tension. Ph.D. Thesis, Department of Chemical Engineering, University Austin, Texas, USA, 256pp.

Salager, J. L., Anton, R. & Aubry, J. M. (2006). Formulation des émulsions par la méthode du HLD. Techniques de l'ingénieur. Génie des Procédés J2(158), 1-16.

Salager, J. L., Forgiarini, A. M., Márquez, L., Manchego, L. & Bullón, J. (2013). How to attain an ultralow interfacial tension and a three-phase behavior with a surfactant formulation for enhanced oil recovery: A review. Part 2. Performance improvement trends from Winsor's premise to currently proposed inter- and intra-molecular mixtures. J. Surf. Deterg., 16(5), 631-663.

Sandvik, E. I., Gale, W. W. & Denekas, M. O. (1977). Characterization of petroleum sulfonates. SPE Journal, 17(3), 184-192.

Sánchez, J. & Del Valle, M. (2005). Determination of anionic surfactants employing potentiometric sensors - A review. Crit. Rev. Anal. Chem., 35(1), 15-29.

Sheng, J. J. (2011). Modern chemical enhanced oil recovery. 1th ed. Burlington: Elsevier.

Taber, J. J. (1969). Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. SPE Journal, 9(1), 3-12.

Thanaa, A. M. (2006). Surfactant formulations in enhanced oil recovery. In: Showell, M. Handbook of detergents. Part D. Formulation. Ohio: Taylor and Francis Group, 325-345.

Villalanti, D. C., Raia, J. C. & Maynard, J. B. (2000). High- temperature simulated distillation applications in petroleum characterization. In: Meyers, R. A., Encyclopedia of analytical chemistry. Chcichester: John Wiley & Sons Ltd., 6726-6741.

Wade, W. H., Morgan, J. C., Schechter, R. S., Jacobson, J. K. & Salager, J. L. (1978). Interfacial tension and phase behavior of surfactant systems. SPE Journal, 18(4), 242-252.

Winsor, P. (1954). Solvent properties of amphiphilic compounds. London: Butterworth.

Witthayapanyanon, A., Harwell, J. H. & Sabatini, D. A. (2008). Hydrophilic-Lipophilic Deviation (HLD) method for characterizing conventional and extended surfactants. J. Colloid Interf. Sci., 325(1), 259-266.

Wu, Y., Shuler, P. J., Blanco, M., Tang, Y. & Goddard, W. A. (2005). A study of branched alcohol propoxylate sulfate surfactants for improved oil recovery. SPE Annual Technical Conference and Exhibition, Dallas, USA. SPE 95404.

Zhang, D, Zhang, P., Zou, H., Chu, G., Wu, W., Zhu, Z., Shao, L. & Chen, J. (2010). Synthesis of petroleum sulfonate surfactant by different sulfonating agnet with application of HIGEE technology. Chin. J. Chem. Eng., 18(5), 848-855.
How to Cite
Pachón Contreras, Z. del P., Rojas Ruíz, F. A., Rondón Antón, M. J., Vidal Prada, J. C., & Pulido Solano, F. A. (2014). Petroleum sulfonates preparation and evaluation for chemical enhanced oil recovery in Colombian oil fields. CT&F - Ciencia, Tecnología Y Futuro, 5(5), 55-73.


Download data is not yet available.
Scientific and Technological Research Articles

More on this topic

Most read articles by the same author(s)