Use of nanoparticles to improve thermochemical resistance of synthetic polymer to enhanced oil recovery applications: a review

Keywords: Nanomaterials, Polymer Nanofluids, Synthesis, Synthetic Polymers, Hydrolyzed Polyacrylamide (HPAM), Enhanced Oil Recovery (EOR), nanoparticules, thermal -chemical degradation

Abstract

Partially Hydrolyzed Polyacrylamide (HPAM) is the polymer most used in chemical enhanced oil recovery (cEOR) processes and it has been implemented in several field projects worldwide. Polymer injection has shown to be an effective EOR process. However, it has not been implemented massively due to HPAM polymer's limitations, mostly related to thermal and chemical degradation caused by exposure at high temperatures and salinities (HTHS). As an alternative, a new generation of chemically stable monomers to improve the properties of HPAM has been assessed at laboratory and field conditions. However, the use of enhanced polymers is limited due to its larger molecular size, large-scale production, and higher costs.

One of the alternatives proposed in the last decade to improve polymer properties is the use of nanoparticles, which due to their ultra-small size, large surface area, and highly reactive capacity, can contribute to reduce or avoid the degrading processes of HPAM polymers. Nanoparticles (NPs) can be integrated with the polymer in several ways, it being worth to highlight mixing with the polymer in aqueous solution or inclusion by grafting or chemical functionalization on the nanoparticle surface. This review focuses on hybrid nanomaterials based on SiO2 NPs and synthetic polymers with great EOR potential. The synthesis process, characterization, and the main properties for application in EOR processes, were reviewed and analyzed.

Nanohybrids based on polymers and silica nanoparticles show promising results in improving viscosity and thermal stability compared to the HPAM polymer precursor. Furthermore, based on recent findings, there are great opportunities to implement polymer nanofluids in cEOR projects. This approach could be of value to optimize the technical-economic feasibility of projects by reducing the polymer concentration of using reasonable amounts of nanoparticles. However, more significant efforts are required to understand the impact of nanoparticle concentrations and injection rates to support the upscaling of this cEOR technology.

References

Gurgel, A., Moura, M. C. P. A., Dantas, T. N. C., Neto, E. B., & Neto, A. D. (2008). A review on chemical flooding methods applied in enhanced oil recovery. Brazilian journal of petroleum and gas, 2(2), pp. 83–95, 2008.

Kamal, M. S., Sultan, A. S., Al-Mubaiyedh, U. A., & Hussein, I. A. (2015). Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems. Polymer Reviews, 55(3), 491-530. https://doi.org/10.1080/15583724.2014.982821

Castro-Garcia, R. H., Maya-Toro, G. A., Jimenez-Diaz, R., Quintero-Perez, H. I., Díaz-Guardia, V. M., Colmenares-Vargas, K. M., ... & Pérez-Romero, R. A. (2016). Polymer flooding to improve volumetric sweep efficiency in waterflooding processes. CT&F-Ciencia, Tecnología y Futuro, 6(3), 71-90. https://doi.org/10.29047/01225383.10

Manrique, E., Ahmadi, M., & Samani, S. (2017). Historical and recent observations in polymer floods: an update review. CT&F-Ciencia, Tecnología y Futuro, 6(5), 17-48. https://doi.org/10.29047/01225383.72

Mogollon, J. L., & Lokhandwala, T. (2013, July). Rejuvenating viscous oil reservoirs by polymer injection: lessons learned in the field. In SPE Enhanced Oil Recovery Conference. Society of Petroleum Engineers, Kuala Lumpur, Malaysia. https://doi.org/10.2118/165275-MS

Algharaib, M., Alajmi, A., & Gharbi, R. (2014). Improving polymer flood performance in high salinity reservoirs. Journal of Petroleum Science and Engineering, 115, 17-23. https://doi.org/10.1016/j.petrol.2014.02.003

Green, D. W., & Willhite, G. P. (1998). Enhanced oil recovery. Richardson, Texas. SPE Textbook Series Vol. 6. SPE.

Buchgraber, M., Clemens, T., Castanier, L. M., & Kovscek, A. R. (2009, January). The displacement of viscous oil by associative polymer solutions. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, New Orleans, USA. https://doi.org/10.2118/122400-MS

De Ferrer, M. P. (2001). Inyección de agua y gas en yacimientos petrolíferos. Maracaibo, Venezuela: Ediciones Astro Data SA.

Zerpa, L. E., Queipo, N. V., Pintos, S., & Salager, J. L. (2005). An optimization methodology of alkaline–surfactant–polymer flooding processes using field scale numerical simulation and multiple surrogates. Journal of Petroleum Science and Engineering, 47(3-4), 197-208. https://doi.org/10.1016/j.petrol.2005.03.002

Pancharoen, M., Thiele, M. R., & Kovscek, A. R. (2010, April). Inaccessible pore volume of associative polymer floods. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers. Tulsa, OK, USA. https://doi.org/10.2118/129910-MS

Zhang, L. J., & Yue, X. A. (2008). Displacement of polymer solution on residual oil trapped in dead ends. Journal of Central South University of Technology, 15(1), 84-87. https://doi.org/10.1007/s11771-008-0320-4

Luo, J. H., Liu, Y. Z., & Zhu, P. (2006). Polymer solution properties and displacement mechanisms. Enhanced Oil Recovery-Polymer Flooding; Shen, P.-P., Liu, Y.-Z., Liu, H.-R., Eds, 1-72.

Taber, J. J., Martin, F. D., & Seright, R. S. (1997). EOR screening criteria revisited-Part 1: Introduction to screening criteria and enhanced recovery field projects. SPE reservoir engineering, 12(03), 189-198. https://doi.org/10.2118/35385-PA

Kwak, H. T., Yousef, A. A., & Al-Saleh, S. (2014, April). New insights on the role of multivalent ions in water-carbonate rock interactions. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers. Tulsa, OK, USA. https://doi.org/10.2118/169112-MS

Delamaide, E. (2014, September). Polymer flooding of heavy oil-from screening to full-field extension. In SPE Heavy and Extra Heavy Oil Conference: Latin America. Society of Petroleum Engineers. Medellín, Colombia. https://doi.org/10.2118/171105-MS

Thomas, S. (2008). Enhanced oil recovery-an overview. Oil & Gas Science and Technology-Revue de l'IFP, 63(1), 9-19. https://doi.org/10.2516/ogst:2007060

Hu, Z., Haruna, M., Gao, H., Nourafkan, E., & Wen, D. (2017). Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles. Industrial & Engineering Chemistry Research, 56(12), 3456-3463. https://doi.org/10.1021/acs.iecr.6b05036

Giraldo, L. J., Giraldo, M. A., Llanos, S., Maya, G., Zabala, R. D., Nassar, N. N., ... & Cortés, F. B. (2017). The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions. Journal of Petroleum Science and Engineering, 159, 841-852. https://doi.org/10.1016/j.petrol.2017.10.009

Agista, M. N., Guo, K., & Yu, Z. (2018). A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery. Applied Sciences, 8(6), 871. https://doi.org/10.3390/app8060871

Ragab, A. M. S. (2014). Investigating the Potential of Nanomaterials for Enhanced Oil Recovery: State of Art. Journal of Science and Technology, 6(1). Retrieved from https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/833

Druetta, P., & Picchioni, F. (2019). Polymer and nanoparticles flooding as a new method for Enhanced Oil Recovery. Journal of Petroleum Science and Engineering, 177, 479-495. https://doi.org/10.1016/j.petrol.2019.02.070

Cheraghian, G., Nezhad, S. S. K., Kamari, M., Hemmati, M., Masihi, M., & Bazgir, S. (2015). Effect of nanoclay on improved rheology properties of polyacrylamide solutions used in enhanced oil recovery. Journal of Petroleum Exploration and Production Technology, 5(2), 189-196. https://doi.org/10.1007/s13202-014-0125-y

Abdulbaki, M., Huh, C., Sepehrnoori, K., Delshad, M., & Varavei, A. (2014). A critical review on use of polymer microgels for conformance control purposes. Journal of Petroleum Science and Engineering, 122, 741-753. https://doi.org/10.1016/j.petrol.2014.06.034

Zhuoyan, Z., Quan, X., Hanbing, X., Jian, F., Feng, W., Juedu, A., ... & Dehai, H. (2015, May). Evaluation of the potential of high-temperature, low-salinity polymer flood for the Gao-30 reservoir in the Huabei oilfield, China: experimental and reservoir simulation results. In Offshore Technology Conference. Offshore Technology Conference. Houston, TX, USA. https://doi.org/10.4043/25817-MS

Wu, Y., Mahmoudkhani, A., Watson, P., Fenderson, T. R., & Nair, M. (2012, April). Development of new polymers with better performance under conditions of high temperature and high salinity. In SPE EOR conference at oil and gas West Asia. Society of Petroleum Engineers. Muscat, Oman. https://doi.org/10.2118/155653-MS

Fan, J. C., Wang, F. C., Chen, J., Zhu, Y. B., Lu, D. T., Liu, H., & Wu, H. A. (2018). Molecular mechanism of viscoelastic polymer enhanced oil recovery in nanopores. Royal Society open science, 5(6), 180076. https://doi.org/10.1098/rsos.180076

Zhao F.-L. (1991). Chemistry in Oil Production. China.University of Petroleum.

Thomas, A., Gaillard, N., & Favero, C. (2012). Some key features to consider when studying acrylamide-based polymers for chemical enhanced oil recovery. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 67(6), 887-902. https://doi.org/10.2516/ogst/2012065

Bourdarot, G., & Ghedan, S. G. (2011, October). Modified EOR Screening Criteria as Applied to a Group of Offshore Carbonate Oil Reservoirs. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers. Abu Dhabi, UAE. https://doi.org/10.2118/148323-MS

Wu, Y., Mahmoudkhani, A., Watson, P., Fenderson, T. R., & Nair, M. (2012, April). Development of new polymers with better performance under conditions of high temperature and high salinity. In SPE EOR conference at oil and gas West Asia. Society of Petroleum Engineers. Muscat, Oman. https://doi.org/10.2118/155653-MS

Han, M., Fuseni, A., Zahrani, B., & Wang, J. (2014, March). Laboratory study on polymers for chemical flooding in carbonate reservoirs. In SPE EOR Conference at Oil and Gas West Asia. Society of Petroleum Engineers. Muscat, Oman. https://doi.org/10.2118/169724-MS

Sheng, J. J. (2010). Modern chemical enhanced oil recovery: theory and practice. Texas, USA. Gulf Professional Publishing.

Kurenkov, V. F., Hartan, H. G., & Lobanov, F. I. (2001). Alkaline hydrolysis of polyacrylamide. Russian Journal of Applied Chemistry, 74(4), 543-554. https://doi.org/10.1023/A:1012786826774

Devendiran, D. K., & Amirtham, V. A. (2016). A review on preparation, characterization, properties and applications of nanofluids. Renewable and Sustainable Energy Reviews, 60, 21-40. https://doi.org/10.1016/j.rser.2016.01.055

Xu, Y., Gao, P., Yang, M., Huang, G., & Wang, B. (2011). Synthesis and aqueous solution properties of a novel nonionic, amphiphilic comb-type polyacrylamide. Journal of Macromolecular Science, Part B, 50(9), 1691-1704. https://doi.org/10.1080/00222348.2010.549043

Flew, S., & Sellin, R. H. J. (1993). Non-newtonian flow in porous media-a laboratory study of polyacrylamide solutions. Journal of non-newtonian fluid mechanics, 47, 169-210. https://doi.org/10.1016/0377-0257(93)80050-L

Shah, D. O. (Ed.). (1977). Improved oil recovery by surfactant and polymer flooding. Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-126-41750-0.X5001-4

Seright, R. S., Fan, T., Wavrik, K., Wan, H., Gaillard, N., & Favéro, C. (2011). Rheology of a new sulfonic associative polymer in porous media. SPE Reservoir Evaluation & Engineering, 14(06), 726-734. https://doi.org/10.2118/141355-PA

Niu, Y., Jian, O., Zhu, Z., Wang, G., & Sun, G. (2001, February). Research on hydrophobically associating water-soluble polymer used for EOR. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers. Houston, TX, USA. https://doi.org/10.2118/65378-MS

Zhang, Q., Zhou, J. S., Zhai, Y. A., Liu, F. Q., & Gao, G. (2008). Effect of salt solutions on chain structure of partially hydrolyzed polyacrylamide. Journal of central south university of technology, 15(1), 80-83. https://doi.org/10.1007/s11771-008-0319-x

Sabhapondit, A., Borthakur, A., & Haque, I. (2003). Characterization of acrylamide polymers for enhanced oil recovery. Journal of applied polymer science, 87(12), 1869-1878. https://doi.org/10.1002/app.11491

Xu, L., Xu, G., Liu, T., Chen, Y., & Gong, H. (2013). The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydrate polymers, 92(1), 516-522. https://doi.org/10.1016/j.carbpol.2012.09.082

Wang, X., Liu, R., Shao, Z., Miller, J. H., Wakasiki, S., & Lisana, R. (2014, January). A new treatment technique of produced water from polymer flooding. In IPTC 2014: International Petroleum Technology Conference (Vol. 2014, No. 1, pp. 1-9). European Association of Geoscientists & Engineers, Doha, Qatar. https://doi.org/10.2523/IPTC-17455-MS

Samanta, A., Bera, A., Ojha, K., & Mandal, A. (2010). Effects of alkali, salts, and surfactant on rheological behavior of partially hydrolyzed polyacrylamide solutions. Journal of Chemical & Engineering Data, 55(10), 4315-4322. https://doi.org/10.1021/je100458a

Szabo, M. T. (1979). An evaluation of water-soluble polymers for secondary oil Recovery-Parts 1 and 2. Journal of Petroleum Technology, 31(05), 553-570. https://doi.org/10.2118/6601-PA

Sukpisan, J., Kanatharana, J., Sirivat, A., & Wang, S. Q. (1998). The specific viscosity of partially hydrolyzed polyacrylamide solutions: Effects of degree of hydrolysis, molecular weight, solvent quality and temperature. Journal of Polymer Science Part B: Polymer Physics, 36(5), 743-753. https://doi.org/10.1002/(SICI)1099-0488(19980415)36:5<743::AID-POLB2>3.0.CO;2-M

Peng, S., & Wu, C. (1999). Light scattering study of the formation and structure of partially hydrolyzed poly (acrylamide)/calcium (II) complexes. Macromolecules, 32(3), 585-589. https://doi.org/10.1021/ma9809031

Gong, H., Xu, G., Zhu, Y., Wang, Y., Wu, D., Niu, M., ... & Wang, H. (2009). Influencing factors on the properties of complex systems consisting of hydrolyzed polyacrylamide/triton x-100/cetyl trimethylammonium bromide: viscosity and dynamic interfacial tension studies. Energy & fuels, 23(1), 300-305. https://doi.org/10.1021/ef800546t

Rashidi, M., Blokhus, A. M., & Skauge, A. (2010). Viscosity study of salt tolerant polymers. Journal of applied polymer science, 117(3), 1551-1557. https://doi.org/10.1002/app.32011

Ghannam, M., & Esmail, N. (2002). Flow behavior of enhanced oil recovery alcoflood polymers. Journal of applied polymer science, 85(14), 2896-2904. https://doi.org/10.1002/app.10810

Hou, J., Liu, Z., Zhang, S., & Yang, J. (2005). The role of viscoelasticity of alkali/surfactant/polymer solutions in enhanced oil recovery. Journal of Petroleum Science and Engineering, 47(3-4), 219-235. https://doi.org/10.1016/j.petrol.2005.04.001

Shupe, R. D. (1981). Chemical stability of polyacrylamide polymers. Journal of Petroleum Technology, 33(08), 1513-1529. https://doi.org/10.2118/9299-PA

Dupuis, D., Lewandowski, F. Y., Steiert, P., & Wolff, C. (1994). Shear thickening and time-dependent phenomena: The case of polyacrylamide solutions. Journal of non-newtonian fluid mechanics, 54, 11-32. https://doi.org/10.1016/0377-0257(94)80013-8

Bradna, P., Quadrat, O., & Dupuis, D. (1995). The influence of salt concentration on negative thixotropy in solutions of partially hydrolyzed polyacrylamide. Colloid and Polymer Science, 273(5), 421-425. https://doi.org/10.1007/BF00656885

Broseta, D., Medjahed, F., Lecourtier, J., & Robin, M. (1995). Polymer adsorption/retention in porous media: Effects of core wettability and residual oil. SPE Advanced Technology Series, 3(01), 103-112. https://doi.org/10.2118/24149-PA

Martin, F. D. (1986). Mechanical degradation of polyacrylamide solutions in core plugs from several carbonate reservoirs. SPE Formation Evaluation, 1(02), 139-150. https://doi.org/10.2118/12651-PA

Zaitoun, A., Makakou, P., Blin, N., Al-Maamari, R. S., Al-Hashmi, A. A. R., & Abdel-Goad, M. (2012). Shear stability of EOR polymers. SPE Journal, 17(02), 335-339. https://doi.org/10.2118/141113-PA

Zhong, C., Luo, P., Ye, Z., & Chen, H. (2009). Characterization and solution properties of a novel water-soluble terpolymer for enhanced oil recovery. Polymer Bulletin, 62(1), 79-89. https://doi.org/10.1007/s00289-008-1007-6

Nasr-El-Din, H. A., Hawkins, B. F., & Green, K. A. (1991, January). Viscosity behavior of alkaline, surfactant, polyacrylamide solutions used for enhanced oil recovery. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers. Anaheim, CA, USA. https://doi.org/10.2118/21028-M

Xin, X., Xu, G., Gong, H., Bai, Y., & Tan, Y. (2008). Interaction between sodium oleate and partially hydrolyzed polyacrylamide: A rheological study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 326(1-2), 1-9. https://doi.org/10.1016/j.colsurfa.2008.05.009

Albonico, P., & Lockhart, T. P. (1993, January). Divalent ion-resistant polymer gels for high-temperature applications: syneresis inhibiting additives. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers. New Orleans, USA. https://doi.org/10.2118/25220-MS

Ghannam, M. T., & Esmail, M. N. (1998). Rheological properties of aqueous polyacrylamide solutions. Journal of applied polymer science, 69(8), 1587-1597. https://doi.org/10.1002/(SICI)1097-4628(19980822)69:8<1587::AID-APP13>3.0.CO;2-S

Lewandowska, K. (2007). Comparative studies of rheological properties of polyacrylamide and partially hydrolyzed polyacrylamide solutions. Journal of applied polymer science, 103(4), 2235-2241. https://doi.org/10.1002/app.25247

Hu, Y., Wang, S. Q., & Jamieson, A. M. (1995). Rheological and rheooptical studies of shear-thickening polyacrylamide solutions. Macromolecules, 28(6), 1847-1853. https://doi.org/10.1021/ma00110a019

Martin, F. D., Hatch, M. J., Shepitka, J. S., & Ward, J. S. (1983, June). Improved water-soluble polymers for enhanced recovery of oil. In SPE oilfield and geothermal chemistry symposium. Society of Petroleum Engineers. Denver, Colorado, USA. https://doi.org/10.2118/11786-MS

Levitt, D., & Pope, G. A. (2008, April). Selection and screening of polymers for enhanced-oil recovery. In SPE symposium on improved oil recovery. Society of Petroleum Engineers. Tulsa, Oklahoma, USA. https://doi.org/10.2118/113845-MS

Levitt, D. B., Pope, G. A., & Jouenne, S. (2011). Chemical degradation of polyacrylamide polymers under alkaline conditions. SPE Reservoir Evaluation & Engineering, 14(03), 281-286. https://doi.org/10.2118/129879-PA

Moradi-Araghi, A., & Doe, P. H. (1987). Hydrolysis and precipitation of polyacrylamides in hard brines at elevated temperatures. SPE Reservoir Engineering, 2(02), 189-198. https://doi.org/10.2118/13033-PA

Zaitoun, A., & Potie, B. (1983, June). Limiting conditions for the use of hydrolyzed polyacrylamides in brines containing divalent ions. In SPE Oilfield and Geothermal Chemistry Symposium. Society of Petroleum Engineers. Denver, Colorado, USA. https://doi.org/10.2118/11785-MS

Muller, G. (1981). Thermal stability of high-molecular-weight polyacrylamide aqueous solutions. Polymer Bulletin, 5(1), 31-37. https://doi.org/10.1007/BF00255084

Ryles, R. G. (1988). Chemical stability limits of water-soluble polymers used in oil recovery processes. SPE reservoir engineering, 3(01), 23-34. https://doi.org/10.2118/13585-PA

Lu, H., Feng, Y., Zhang, T., & Huang, Z. (2010). Retention behaviors of hydrophobically associating polyacrylamide prepared via inverse microemulsion polymerization through porous media. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 47(6), 602-607. https://doi.org/10.1080/10601321003742105

Wu, Y., Wang, K. S., Hu, Z., Bai, B., Shuler, P. J., & Tang, Y. (2009, October). A new method for fast screening of long term thermal stability of water-soluble polymers for reservoir conformance control. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. New Orleans, Louisiana, USA. https://doi.org/10.2118/124257-MS

K. S. Sorbie (1991). Polymer-Improved Oil Recovery. Netherlands: Springer. https://doi.org/10.1007/978-94-011-3044-8.

Gröllmann, U., & Schnabel, W. (1982). Free radical-induced oxidative degradation of polyacrylamide in aqueous solution. Polymer Degradation and Stability, 4(3), 203-212. https://doi.org/10.1016/0141-3910(82)90027-1

Moradi-Araghi, A., Cleveland, D. H., & Westerman, I. J. (1987, February). Development and evaluation of eor polymers suitable for hostile environments: II-Copolymers of acrylamide and sodium AMPS. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers. San Antonio, TX, USA. https://doi.org/10.2118/16273-MS

Sheng, J. J., Leonhardt, B., & Azri, N. (2015). Status of polymer-flooding technology. Journal of Canadian petroleum technology, 54(02), 116-126. https://doi.org/10.2118/174541-PA

T Chen, T., Song, Z., Fan, Y., Hu, C., Qiu, L., & Tang, J. (1998). A pilot test of polymer flooding in an elevated-temperature reservoir. SPE Reservoir Evaluation & Engineering, 1(01), 24-29. https://doi.org/10.2118/36708-PA

Han, M., AlSofi, A., Fuseni, A., Zhou, X., & Hassan, S. (2013, March). Development of chemical EOR formulations for a high temperature and high salinity carbonate reservoir. In IPTC 2013: International Petroleum Technology Conference. European Association of Geoscientists & Engineers. Beiging, China. https://doi.org/10.2523/IPTC-17084-MS

Khune, G. D., Donaruma, L. G., Hatch, M. J., Kilmer, N. H., Shepitka, J. S., & Martin, F. D. (1985). Modified acrylamide polymers for enhanced oil recovery. Journal of applied polymer science, 30(2), 875-885. https://doi.org/10.1002/app.1985.070300234

Doe, P. H., Moradi-Araghi, A., Shaw, J. E., & Stahl, G. A. (1987). Development and evaluation of EOR polymers suitable for hostile environments part 1: Copolymers of vinylpyrrolidone and acrylamide. SPE Reservoir Engineering, 2(04), 461-467. https://doi.org/10.2118/14233-PA

Fernandez, I. J. (2005, February). Evaluation of cationic water-soluble polymers with improved thermal stability. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers. The Woodlands, Texas, USA. https://doi.org/10.2118/93003-MS

B. Wei. (2016). Advances in Polymer Flooding. In El-Hamid, M. (Ed.), Viscoelastic and Viscoplastic Materials. IntechOpen. https://doi.org/10.5772/64069

Vermolen, E., Van Haasterecht, M. J., Masalmeh, S. K., Faber, M. J., Boersma, D. M., & Gruenenfelder, M. A. (2011, September). Pushing the envelope for polymer flooding towards high-temperature and high-salinity reservoirs with polyacrylamide based ter-polymers. In SPE Middle East Oil and Gas Show and Conference. Society of Petroleum Engineers. Manama, Baharein. https://doi.org/10.2118/141497-MS

Pizzinelli, C. S., Masserano, F., Dresda, S., Cimino, R., Braccalenti, E., & El Rahman, A. A. (2015, March). Polymer injection: EOR application in North African field from lab analysis to project start-up. In Offshore Mediterranean Conference and Exhibition. Offshore Mediterranean Conference. Ravenna, Italy.

Kudaibergenov, S. E., & Ciferri, A. (2007). Natural and Synthetic Polyampholytes, 2: Functions and Applications. Macromolecular rapid communications, 28(20), 1969-1986. https://doi.org/10.1002/marc.200700197

Lara-Ceniceros, A. C., Rivera-Vallejo, C., & Jiménez-Regalado, E. J. (2007). Synthesis, characterization and rheological properties of three different associative polymers obtained by micellar polymerization. Polymer Bulletin, 58(2), 425-433. https://doi.org/10.1007/s00289-006-0675-3

Moradi-Araghi, A., Cleveland, D. H., & Westerman, I. J. (1987, February). Development and evaluation of eor polymers suitable for hostile environments: II-Copolymers of acrylamide and sodium AMPS. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers. San Antonio, Texas, USA. https://doi.org/10.2118/16273-MS

Parker Jr, W. O., & Lezzi, A. (1993). Hydrolysis of sodium-2-acrylamido-2-methylpropanesulfonate copolymers at elevated temperature in aqueous solution via 13C nmr spectroscopy. Polymer, 34(23), 4913-4918. https://doi.org/10.1016/0032-3861(93)90018-6

Caram, Y., Bautista, F., Puig, J. E., & Manero, O. (2006). On the rheological modeling of associative polymers. Rheologica acta, 46(1), 45-57. https://doi.org/10.1007/s00397-005-0066-y

Zhang, P., Wang, Y., Yang, Y., Zhang, J., Cao, X., & Song, X. (2012). The effect of microstructure on performance of associative polymer: In solution and porous media. Journal of Petroleum Science and Engineering, 90, 12-17. https://doi.org/10.1016/j.petrol.2012.04.004

Lu, H., Feng, Y., & Huang, Z. (2008). Association and effective hydrodynamic thickness of hydrophobically associating polyacrylamide through porous media. Journal of applied polymer science, 110(3), 1837-1843. https://doi.org/10.1002/app.28596

Pancharoen, M. (2009). Physical properties of associative polymer solutions (Master of Science Thesis). Stanford University, Department of Energy Resources Engineering, Stanford, California, USA.

Han, M., Xiang, W., Zhang, J., Jiang, W., & Sun, F. (2006, December). Application of EOR technology by means of polymer flooding in Bohai Oilfields. In International oil & gas conference and exhibition in China. Society of Petroleum Engineers. Beijing, China. https://doi.org/10.2118/104432-MS

Tang, J.-X., Cheng, T.-L. , He, J.-S. and Peng, K.-Z. (1998). Relative permeabilities in polymer flooding. Chemical Flooding Symposium—Research Results during the Eighth Five-Year Period (1991–1995), Vol. I. Petroleum Industry Press.

Gao, C., Shi, J., & Zhao, F. (2014). Successful polymer flooding and surfactant-polymer flooding projects at Shengli Oilfield from 1992 to 2012. Journal of petroleum exploration and production technology, 4(1), 1-8. https://doi.org/10.1007/s13202-013-0069-7

Wang, Y., Luo, J., Bo, R., Wang, P., & Liu, Y. (2003). KYPAM Salt-resistant Comb-shape Polymer Application in Oilfield. Chemical Industry and Engineering Progress, 22(5), 509-511. Retrieved from: http://caod.oriprobe.com/articles/6312612/KYPAM_Salt_resistant_Comb_shape_Polymer_Application_in_Oilfield.htm

Gaillard, N., Giovannetti, B., Favero, C., Caritey, J. P., Dupuis, G., & Zaitoun, A. (2014, April). New water soluble anionic NVP acrylamide terpolymers for use in harsh EOR conditions. In SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers. Tulsa, Oklahoma. USA. https://doi.org/10.2118/169108-MS

Silva, G. G., De Oliveira, A. L., Caliman, V., Viana, M. M., & Soares, M. C. F. (2013, October). Improvement of viscosity and stability of polyacrylamide aqueous solution using carbon black as a nano-additive. In OTC Brasil. Offshore Technology Conference. Rio de Janeiro, Brazil. https://doi.org/10.4043/24443-MS

ShamsiJazeyi, H., Miller, C. A., Wong, M. S., Tour, J. M., & Verduzco, R. (2014). Polymer‐coated nanoparticles for enhanced oil recovery. Journal of applied polymer science, 131(15). https://doi.org/10.1002/app.40576

Sun, X., Zhang, Y., Chen, G., & Gai, Z. (2017). Application of nanoparticles in enhanced oil recovery: a critical review of recent progress. Energies, 10(3), 345. https://doi.org/10.3390/en10030345

Bera, A., & Belhaj, H. (2016). Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery-A comprehensive review. Journal of Natural Gas Science and Engineering, 34, 1284-1309. https://doi.org/10.1016/j.jngse.2016.08.023

Choi, S. U. (2008). Nanofluids: A new field of scientific research and innovative applications. Heat Transfer Engineering, 29(5), 429–431. https://doi.org/10.1080/01457630701850778

Devendiran, D. K., & Amirtham, V. A. (2016). A review on preparation, characterization, properties and applications of nanofluids. Renewable and Sustainable Energy Reviews, 60, 21-40. https://doi.org/10.1016/j.rser.2016.01.055

Ghadimi, A., Saidur, R., & Metselaar, H. S. C. (2011). A review of nanofluid stability properties and characterization in stationary conditions. International journal of heat and mass transfer, 54(17-18), 4051-4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

Huminic, G., & Huminic, A. (2012). Application of nanofluids in heat exchangers: A review. Renewable and Sustainable Energy Reviews, 16(8), 5625-5638. https://doi.org/10.1016/j.rser.2012.05.023

Hauser, E. A. (1955). The history of colloid science: In memory of Wolfgang Ostwald. Journal of chemical education, 32(1), 2. https://doi.org/10.1021/ed032p2

Keblinski, P., Eastman, J. A., & Cahill, D. G. (2005). Nanofluids for thermal transport. Materials today, 8(6), 36-44. https://doi.org/10.1016/S1369-7021(05)70936-6

Suresh, S., Venkitaraj, K. P., Selvakumar, P., & Chandrasekar, M. (2012). Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Experimental Thermal and Fluid Science, 38, 54-60. https://doi.org/10.1016/j.expthermflusci.2011.11.007

Oh, S. T., Lee, J. S., Sekino, T., & Niihara, K. (2001). Fabrication of Cu dispersed Al2O3 nanocomposites using Al2O3/CuO and Al2O3/Cu-nitrate mixtures. Scripta materialia, 44(8-9), 2117-2120. https://doi.org/10.1016/S1359-6462(01)00890-9

Li, H., Ha, C. S., & Kim, I. (2009). Fabrication of carbon nanotube/SiO 2 and carbon nanotube/SiO 2/Ag nanoparticles hybrids by using plasma treatment. Nanoscale research letters, 4(11), 1384-1388. https://doi.org/10.1007/s11671-009-9409-4

Guo, S., Dong, S., & Wang, E. (2008). Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables: preparation and application as electrocatalysts for oxygen reduction. The Journal of Physical Chemistry C, 112(7), 2389-2393. https://doi.org/10.1021/jp0772629

Chegenizadeh, N., Saeedi, A., & Xie, Q. (2016). Application of nanotechnology for enhancing oil recovery–A review. Petroleum, 2(4), 324-333. https://doi.org/10.1016/j.petlm.2016.10.002

Suleimanov, B. A., Ismailov, F. S., & Veliyev, E. F. (2011). Nanofluid for enhanced oil recovery. Journal of Petroleum Science and Engineering, 78(2), 431-437. https://doi.org/10.1016/j.petrol.2011.06.014

Dong, H., Ye, P., Zhong, M., Pietrasik, J., Drumright, R., & Matyjaszewski, K. (2010). Superhydrophilic Surfaces via Polymer− SiO2 Nanocomposites. Langmuir, 26(19), 15567-15573. https://doi.org/10.1021/la102145s

Maghzi, A., Kharrat, R., Mohebbi, A., & Ghazanfari, M. H. (2014). The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery. Fuel, 123, 123-132. https://doi.org/10.1016/j.fuel.2014.01.017

Hendraningrat, L., Li, S., & Torsæter, O. (2013). A coreflood investigation of nanofluid enhanced oil recovery. Journal of Petroleum Science and Engineering, 111, 128-138. https://doi.org/10.1016/j.petrol.2013.07.003

Hendraningrat, L., & Torsæter, O. (2014, October). Understanding fluid-fluid and fluid-rock interactions in the presence of hydrophilic nanoparticles at various conditions. In SPE Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers. Adelaide, Australia. https://doi.org/10.2118/171407-MS

El-Diasty, A. I. (2015, August). The potential of nanoparticles to improve oil recovery in bahariya formation, Egypt: An experimental study. In SPE Asia Pacific enhanced oil recovery conference. Society of Petroleum Engineers. Kuala Lumpur, Malaysia. https://doi.org/10.2118/174599-M.

Hendraningrat, L., Li, S., & Torsater, O. (2013, September). Effect of some parameters influencing enhanced oil recovery process using silica nanoparticles: an experimental investigation. In SPE Reservoir Characterization and Simulation Conference and Exhibition. Society of Petroleum Engineers. Abu Dhabi, UAE. https://doi.org/10.2118/165955-MS

Ragab, A. M. S., & Hannora, A. E. (2015, September). An experimental investigation of silica nano particles for enhanced oil recovery applications. In SPE North Africa technical conference and exhibition. Society of Petroleum Engineers. Cairo, Egypt. https://doi.org/10.2118/175829-MS

Youssif, M. I., El-Maghraby, R. M., Saleh, S. M., & Elgibaly, A. (2018). Silica nanofluid flooding for enhanced oil recovery in sandstone rocks. Egyptian Journal of Petroleum, 27(1), 105-110. https://doi.org/10.1016/j.ejpe.2017.01.006

Llamos, S., Manrique, E. Quintero, H. & Castro, R. (2019, November) ¿Es la nanotecnología escalable a un proceso convencional de inyección de polímero? nanotecnología aplicada a procesos de recuperación mejorada de petróleo. In 7mo Congreso de Producción y Desarrollo de Reservas. Instituto Argentino del Petróleo y del Gas. Mar del Plata, Argentina.

Irfan, S. A., Shafie, A., Yahya, N., & Zainuddin, N. (2019). Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review. Energies, 12(8), 1575. https://doi.org/10.3390/en12081575

Alomair, O. A., Matar, K. M., & Alsaeed, Y. H. (2014, October). Nanofluids application for heavy oil recovery. In SPE Asia Pacific oil & gas conference and exhibition. Society of Petroleum Engineers. Adelaide, Australia. https://doi.org/10.2118/171539-MS

Salem Ragab, A. M., & Hannora, A. E. (2015, October). A Comparative investigation of nano particle effects for improved oil recovery–experimental work. In SPE Kuwait oil and gas show and conference. Society of Petroleum Engineers. Mishref, Kuwait. https://doi.org/10.2118/175395-MS

Torsater, O., Engeset, B., Hendraningrat, L., & Suwarno, S. (2012, January). Improved oil recovery by nanofluids flooding: an experimental study. In SPE Kuwait international petroleum conference and exhibition. Society of Petroleum Engineers. Kuwait City, Kuwait. https://doi.org/10.2118/163335-MS

Maghzi, A., Mohammadi, S., Ghazanfari, M. H., Kharrat, R., & Masihi, M. (2012). Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Experimental Thermal and Fluid Science, 40, 168-176. https://doi.org/10.1016/j.expthermflusci.2012.03.004

Hendraningrat, L., Li, S., & Torsater, O. (2013, April). A coreflood investigation of nanofluid enhanced oil recovery in low-medium permeability Berea sandstone. In SPE International Symposium on Oilfield Chemistry. Society of Petroleum Engineers. The Woodlands, Texas, USA. https://doi.org/10.2118/164106-MS

Li, S., Hendraningrat, L., & Torsaeter, O. (2013, March). Improved oil recovery by hydrophilic silica nanoparticles suspension: 2 phase flow experimental studies. In Interntaional Petroleum Technology Conference. International Petroleun Technology Conference. Beijing, China. https://doi.org/10.2523/IPTC-16707-MS

Hendraningrat, L., & Torsaeter, O. (2014, March). Unlocking the potential of metal oxides nanoparticles to enhance the oil recovery. In Offshore Technology Conference-Asia. Offshore Technology Conference. Kuala Lumpur, Malaysia. https://doi.org/10.4043/24696-MS

Salem Ragab, A. M., & Hannora, A. E. (2015, October). A Comparative investigation of nano particle effects for improved oil recovery–experimental work. In SPE Kuwait oil and gas show and conference. Society of Petroleum Engineers. Mishref, Kuwait. https://doi.org/10.2118/175395-MS

Tarek, M., & El-Banbi, A. H. (2015, September). Comprehensive investigation of effects of nano-fluid mixtures to enhance oil recovery. In SPE North Africa technical conference and exhibition. Society of Petroleum Engineers. Cairo, Egypt. https://doi.org/10.2118/175835-MS

Li, S., Genys, M., Wang, K., & Torsæter, O. (2015, September). Experimental study of wettability alteration during nanofluid enhanced oil recovery process and its effect on oil recovery. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers. Abu Dhabi, UAE. https://doi.org/10.2118/175610-MS

Roustaei, A., & Bagherzadeh, H. (2015). Experimental investigation of SiO 2 nanoparticles on enhanced oil recovery of carbonate reservoirs. Journal of Petroleum Exploration and Production Technology, 5(1), 27-33. https://doi.org/10.1007/s13202-014-0120-3

Mohebbifar, M., Ghazanfari, M. H., & Vossoughi, M. (2015). Experimental investigation of nano-biomaterial applications for heavy oil recovery in shaly porous models: A pore-level study. Journal of Energy Resources Technology, 137(1). https://doi.org/10.1115/1.4028270

Kazemzadeh, Y., Eshraghi, S. E., Kazemi, K., Sourani, S., Mehrabi, M., & Ahmadi, Y. (2015). Behavior of asphaltene adsorption onto the metal oxide nanoparticle surface and its effect on heavy oil recovery. Industrial & Engineering Chemistry Research, 54(1), 233-239. https://doi.org/10.1021/ie503797g

El-Diasty, A. I. (2015, August). The potential of nanoparticles to improve oil recovery in bahariya formation, Egypt: An experimental study. In SPE Asia Pacific enhanced oil recovery conference. Society of Petroleum Engineers. Kuala Lumpur, Malaysia. https://doi.org/10.2118/174599-MS

Tarek, M. (2015, September). Investigating nano-fluid mixture effects to enhance oil recovery. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. Houston, Texas, USA. https://doi.org/10.2118/178739-STU

X. Sun, Y. Zhang, G. Chen, and Z. Gai. Application of Nanoparticles in Enhanced Oil Recovery : A Critical Review of Recent Progress, 2017. https://doi.org/10.3390/en10030345.

Franco, C. A., Zabala, R., & Cortés, F. B. (2017). Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39-55. https://doi.org/10.1016/j.petrol.2017.07.004

Zabala, R. F. C. A., Franco, C. A., & Cortés, F. B. (2016, April). Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: a field test. In SPE improved oil recovery conference. Society of Petroleum Engineers. Tulsa, Oklahoma, USA. https://doi.org/10.2118/179677-MS

Gracia, R., Marradi, M., Cossío, U., Benito, A., Pérez-San Vicente, A., Gómez-Vallejo, V., ... & Loinaz, I. (2017). Synthesis and functionalization of dextran-based single-chain nanoparticles in aqueous media. Journal of Materials Chemistry B, 5(6), 1143-1147. https://doi.org/10.1039/C6TB02773C

Cheraghian, G., & Khalilinezhad, S. S. (2015). Effect of nanoclay on heavy oil recovery during polymer flooding. Petroleum Science and Technology, 33(9), 999-1007. https://doi.org/10.1080/10916466.2015.1014962

Rahman, I. A., & Padavettan, V. (2012). Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/132424.

Gbadamosi, A. O., Junin, R., Manan, M. A., Yekeen, N., & Augustine, A. (2019). Hybrid suspension of polymer and nanoparticles for enhanced oil recovery. Polymer Bulletin, 76(12), 6193-6230. https://doi.org/10.1007/s00289-019-02713-2

Mallakpour, S., & Naghdi, M. (2018). Polymer/SiO2 nanocomposites: Production and applications. Progress in Materials Science, 97, 409-447. https://doi.org/10.1016/j.pmatsci.2018.04.002

Qiao, R., Deng, H., Putz, K. W., & Brinson, L. C. (2011). Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. Journal of Polymer Science Part B: Polymer Physics, 49(10), 740-748. https://doi.org/10.1002/polb.22236

Nguyen, P. T., Do, B. P. H., Pham, D. K., Nguyen, Q. T., Dao, D. Q. P., & Nguyen, H. A. (2012, June). Evaluation on the EOR potential capacity of the synthesized composite silica-core/polymer-shell nanoparticles blended with surfactant systems for the HPHT offshore reservoir conditions. In SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers. Noordwijk, The Netherlands. https://doi.org/10.2118/157127-MS

R. Zabala, L. J. Giraldo, M. A. Giraldo, S. Llanos, G. Maya, R. Castro, C. A. Franco, F. B. Cortés, C. Castillo, J. Jimenez and C. Patiño. Improving the polymer injection technique and Enhanced Oil Recovery process due to synergy between Nanoparticles (Np) and Polymers, in Congreso Colombiano del Petróleo organizado por ACIPET en Bogotá DCC, 2017.

Maghzi, A., Mohebbi, A., Kharrat, R., & Ghazanfari, M. H. (2013). An experimental investigation of silica nanoparticles effect on the rheological behavior of polyacrylamide solution to enhance heavy oil recovery. Petroleum science and technology, 31(5), 500-508. https://doi.org/10.1080/10916466.2010.518191

Nguyen, P. T., Do, B. P. H., Pham, D. K., Nguyen, Q. T., Dao, D. Q. P., & Nguyen, H. A. (2012, January). Evaluation on the EOR potential capacity of the synthesized composite silica-core/polymer-shell nanoparticles blended with surfactant systems for the HPHT offshore reservoir conditions. In SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers. Noordwijk, The Netherlands. https://doi.org/10.2118/157127-MS

Zhu, D., Han, Y., Zhang, J., Li, X., & Feng, Y. (2014). Enhancing rheological properties of hydrophobically associative polyacrylamide aqueous solutions by hybriding with silica nanoparticles. Journal of Applied Polymer Science, 131(19). https://doi.org/10.1002/app.40876.

Zhu, D., Wei, L., Wang, B., & Feng, Y. (2014). Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in High-Temperature and High-Salinity reservoirs, Energies, 7(6), 3858-3871. https://doi.org/10.3390/en7063858.

Yousefvand, H., & Jafari, A. J. P. M. S. (2015). Enhanced Oil Recovery Using Polymer / nanosilica. Procedia Materials Science, 11, 565-570. https://doi.org/10.1016/j.mspro.2015.11.068.

Kim, I., Worthen, A. J., Johnston, K. P., DiCarlo, D. A., & Huh, C. (2016). Size-dependent properties of silica nanoparticles for Pickering stabilization of emulsions and foams. Journal of Nanoparticle Research, 18(4), 82. https://doi.org/10.1007/s11051-016-3395-0.

Ponnapati, R., Karazincir, O., Dao, E., Ng, R., Mohanty, K. K., & Krishnamoorti, R. (2011). Polymer-Functionalized nanoparticles for improving waterflood sweep efficiency: Characterization and transport properties. Industrial & engineering chemistry research, 50(23), 13030-13036. https://doi.org/10.1021/ie2019257.

Rodriguez, R., Herrera, R., Bourlinos, A. B., Li, R., Amassian, A., Archer, L. A., & Giannelis, E. P. (2010). The Synthesis and Properties of Nanoscale Ionic Materials, Applied Organometallic Chemistry, 24(8), 581-589. https://doi.org/10.1002/aoc.1625.

Tanaka, H., Araki, T., Koyama, T., & Nishikawa, Y. (2005). Universality of Viscoelastic Phase Separation in Soft Matter. Journal of Physics: Condensed Matter, 17(45), S3195–S3204. https://doi.org/10.1088/0953-8984/17/45/002.

Rodriguez, R., Herrera, R., Archer, L. A., & Giannelis, E. P. (2008). Nanoscale Ionic Materials, Advanced Materials, 20(22), 4353-4358. https://doi.org/10.1002/adma.200801975.

Pu, W. F., Liu, R., Wang, K. Y., Li, K. X., Yan, Z. P., Li, B., & Zhao, L. (2015). Water soluble Core-Shell hyperbranched polymers for Enhanced Oil Recovery. Industrial & Engineering Chemistry Research, 54(3), 798-807. https://doi.org/10.1021/ie5039693.

Lai, N., Guo, X., Zhou, N., & Xu, Q. (2016). Shear resistance properties of modified Nano-SiO2/AA/AM copolymer oil displacement agent, Energies, 9(12), 1–13. https://doi.org/10.3390/en9121037.

Liu, R., Pu, W. F., & Du, D. J. (2017). Synthesis and characterization of core-shell associative polymer that prepared by oilfield formation water for chemical flooding. Journal of industrial and engineering chemistry, 46, 80-90. https://doi.org/10.1016/j.jiec.2016.10.018.

Dorigato, A., D’amato, M., & Pegoretti, A. (2012). Thermo-mechanical properties of high density polyethylene - Fumed silica nanocomposites: Effect of filler surface area and treatment. Journal of Polymer Research, 19(6), 1–11. https://doi.org/10.1007/s10965-012-9889-2.

Peña‐Bahamonde, J., San‐Miguel, V., Cabanelas, J. C., & Rodrigues, D. F. (2017). Biological Degradation and Biostability of Nanocomposites Based on Polysulfone with Different Concentrations of Reduced Graphene Oxide. Macromolecular Materials and Engineering, 303(2), 1700359. https://doi.org/10.1002/mame.201700359.

Rinoldi, C., Kijeńska, E., Chlanda, A., Choinska, E., Khenoussi, N., Tamayol, A., ... & Swieszkowski, W. (2018). Nanobead-on-string composites for tendón tissue engineering. Journal of Materials Chemistry B, 6(19), 3116-3127. https://doi.org/10.1039/C8TB00246K.

Caicedo, C., Melo-López, L., Cabello-Alvarado, C., Cruz-Delgado, V. J., & Ávila-Orta, C. A. (2019). ‘Biodegradable polymer nanocomposites applied to technical textiles: A review’, DYNA, 86(211), 288-299. https://doi.org/10.15446/dyna.v86n211.80230

Maiti, P., Batt, C., & Giannelis, E. (2002). Biodegradable Polyester / Layered Silicate Nanocomposites. MRS Proceedings, 740, I5.3. https://doi.org/10.1557/PROC-740-I5.3.

Pandey, J. K., Reddy, K. R., Kumar, A. P., & Singh, R. P. (2005). An overview on the degradability of polymer nanocomposites. Polymer degradation and stability, 88(2), 234-250. https://doi.org/10.1016/j.polymdegradstab.2004.09.013.

Lai, N., Wu, T., Ye, Z., Zhou, N., Xu, Q., & Zeng, F. (2016). Preparation and properties of hyperbranched polymer containing functionalized Nano - SiO2 for Low - Moderate permeability reservoirs. Russian Journal of Applied Chemistry, 89(10), 1681-1693. https://doi.org/10.1134/S1070427216100189.

Lai, N., Wu, T., Ye, Z., Zhang, Y., Zhou, N., & Zeng, F. (2016). Hybrid hyperbranched polymer based on modified Nano-SiO2 for Enhanced Oil Recovery. Chemistry Letters, 45(10), 1189-1191. https://doi.org/10.1246/cl.160554.

Ruiz-Cañas, M. C., Quintero, H. I., Corredor, L. M., Manrique, E., & Romero Bohórquez, A. R. (2020). New Nanohybrid Based on Hydrolyzed Polyacrylamide and Silica Nanoparticles : Morphological, Structural and Thermal Properties. Polymers, 12(5), 1152. https://doi.org/10.3390/polym12051152.

Ruiz-Cañas, M. C., Manrique, E., Romero, A., & Quintero, H. (2020). Hybrid Nanomaterials For Enhanced Oil Recovery: New Alternatives For Polymer Thermal Degradation. In SPE Latin American and Caribbean Petroleum Engineering Conference. Society of Petroleum Engineers. https://doi.org/10.2118/198975-MS.

Quintero-Perez, H. I., Corredor, L. M., Castro-García, R. H., Manrique, E. Ruiz-Cañas, M. C., & Romero-Bohorquez, A. R. (2020). Síntesis de nanohíbridos SiO2-PAM por el método de amidación para aplicación en procesos de recobro mejorado de petróleo". Producto tecnológico. Ecopetrol.

How to Cite
Quintero Perez, H. I., Ruiz Cañas, M. C., Castro Garcia, R. H., & Romero Bohorquez, A. R. (2020). Use of nanoparticles to improve thermochemical resistance of synthetic polymer to enhanced oil recovery applications: a review. CT&F - Ciencia, Tecnología Y Futuro, 10(2), 85-97. https://doi.org/10.29047/01225383.259

Downloads

Download data is not yet available.
Published
2020-12-17
Section
Review Articles

Funding data

Crossref Cited-by logo

More on this topic