Colloidal dispersion gels (CDG) to improve volumetric sweep efficiency in aterflooding processes.

  • Rubén Hernán Castro García Ecopetrol S.A.
  • Gustavo Adolfo Maya Toro Ecopetrol S.A.
  • Jorge Eduardo Sandoval Muñoz Ecopetrol S.A.
  • Lia Margarita Cohen Paternina UT UP Consultorias.
Keywords: Colloidal Dispersion Gels (CDG), Enhanced Oil Recovery (EOR), Chemical injection, Polymer, Numerical simulation

Abstract

Aviable option for the sustainability of hydrocarbon supply in the short and medium term is  increasing the expected ultimate oil recovery factor through Enhanced Oil Recovery processes (EOR).

The purpose of this paper is to describe a methodology to evaluate EOR technologies developed at the Instituto Colombiano del Petróleo (ICP) of ECOPETROL S.A. in 2012.  The methodology includes theoretical evalua-tion, design (geological analysis, engineering analysis, laboratory static and dynamic tests and numerical simulation, among others), field implementation and surveillance of Colloidal Dispersion Gels (CDG) injection. CDG is an EOR method that consists in the co-injection of high molecular weight polymer and a cross-linker, to generate microgels in the reservoir. This technology has become an alternative to polymer flooding.

This paper describes a field application in Dina Cretáceos Field (Dina) supported by the proposed methodology, which corresponds to the first chemical enhanced oil recovery pilot implemented in Colombia by ECOPETROL S.A.  Results of this study show an increase in volumetric sweep efficiency due the improvement of the mobility ratio, increasing in oil production and decreasing in water production.  Based on the results of this pilot, which started in June 2011, the feasibility of expanding the use of CDG technology in Dina and others fields of Colombia is being assessed at present.

References

Alvarado, V. & Manrique, E. (2010). Enhanced oil recovery: Field planning and development strategies. USA, Elsevier.
https://doi.org/10.1016/B978-1-85617-855-6.00008-5

Castro, R., Maya, G., Mercado, D., Trujillo, M., Soto, C., Pérez, H., Lobo, A., Ordóñez, A. & Sandoval, J. (2010). Enhanced Oil Recovery (EOR) Status - Colombia. SPE Latin American and Caribbean Petroleum Engineering Conference, Lima, Perú. Paper SPE 139199.

Castro, R. (2011). Análisis de un proceso de inyección de Geles de Dispersión Coloidal (CDG) usando ensayos de laboratorio slim tube y simulación numérica Campo Dina Cretáceo. Tesis de maestría Fac. Ingenierías Fisicoquímicas, Universidad Industrial de Santander, Bucaramanga, Colombia, 219pp.

Castro, R., Maya, G., Sandoval, J., León, J., Zapata, J., Lobo, A., Villadiego, D., Perdomo, L., Cabrera, F., Izadi, M., Romero, J., Norman, C. & Manrique, E. (2013). Colloidal Dispersion Gels (CDG) in Dina Cretáceos Field: From pilot design to field implementation and perfor- mance. 2013 SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia. Paper SPE 165273.
https://doi.org/10.2118/165273-MS

Chang, H., Sui, X., Xiao, L., Guo, Z., Yao, Y., Xiao, Y., Chen, G., Song, K. & Mack, J. (2004). Successful field pilot of in-depth Colloidal Dispersion Gel (CDG) technology in Daqing Oilfield. SPE Reservoir Evaluation & Engineering, 9(6), 664-673.
https://doi.org/10.2118/89460-PA

Demin, W., Yingjie, S., Yan, W. & Xuping, T. (2002). Producing more than 75% of Daqing Oilfield's production by IOR, What experiences have been learnt?. SPE Asia Pacific Oil and Gas Conference and Exhibition, Mel- bourne, Australia. Paper SPE 77871.

Fielding, R., Gibbons, D. & Legrand, F. (1994). In-depth drive fluid diversion using an evolution of colloidal dispersion gels and new bulk gels: An operational case history of North Rainbow Ranch Unit. SPE/DOE Improved Oil Recovery Symposium, Tulsa, USA. Paper SPE 27773.
https://doi.org/10.2118/27773-MS

Ghazali, H. & Willhite, P. (1985). Permeability modification using aluminum citrate/polymer treatments: Mechanisms of permeability reduction in sandpacks. SPE Oilfield and Geothermal Chemistry Symposium, Phoenix, USA. Paper SPE 13583.
https://doi.org/10.2118/13583-MS

Hirasaki, G. & Pope, G. (1974). Analysis of factors influen cing mobility and adsorption in the flow of polymer solution through porous media. PE Journal, 14(4), 337-346.
https://doi.org/10.2118/4026-PA

Klaveness, T. & Ruoff, P. (1994). Kinetics of the crosslinking of polyacrylamide with Cr(III). Analysis of possible mechanisms. J. Phys. Chem, 98(40), 10119-10123.
https://doi.org/10.1021/j100091a029

Mack J. & Smith, J. (1994). In-depth colloidal dispersion gels improve oil recovery efficiency. SPE/DOE Improved Oil Recovery Symposium, Tulsa, USA. Paper SPE 27780.
https://doi.org/10.2118/27780-MS

Maya, G., Castro, R., Pachón, Z. & Zapata, J. (2012). Polymer gels for controlling water thief zones in injection wells. CT&F - Ciencia, Tecnología y Futuro, 5(1), 37-44.
https://doi.org/10.29047/01225383.215

Norman, C., De Lucía, J. & Turner, B. (2006). Improving volumetric sweep efficiency with polymer gels in the Cuyo Basin of Argentina. SPE/DOE Symposium on Improved Oil Recovery, Tulsa, USA. Paper SPE 99379.
https://doi.org/10.2118/99379-MS

Ranganathan, R., Lewis, R., McCool, C., Green, D. & Willhite, G. (1997). An experimental study of the in situ gelation behavior of a polyacrylamide/aluminum citrate "colloidal dispersion" gel in a porous medium and its aggregate growth during gelation reaction. International Symposium on Oilfield Chemistry, Houston, USA. Paper SPE 37220.
https://doi.org/10.2118/37220-MS

Ranganathan, R., Lewis, R., McCool, C., Green, D. & Willhite, G. (1998). Experimental study of the gelation behavior of a polyacrylamide/aluminum citrate colloidal- dispersion gel system. SPE Journal, 4(3), 337-343.
https://doi.org/10.2118/52503-PA

Sandoval, J., Pérez, H., Maya, G., Castro, R., Muñoz, E., Colmenares, K., León, J., Sánchez, F., Villadiego, D., Manrique, E., Romero, J. & Izadi, M. (2010). Dina Cretáceos Field chemical EOR: From screening to pilot design. SPE Latin American and Caribbean Petroleum Engineering Confe, Lima, Perú. Paper SPE 139200.
https://doi.org/10.2118/139200-MS

Seright, R. (1983). The effects of mechanical degradation and viscoelastic behavior on injectivity of polyacrylamide solutions. SPE Journal, 23(3), 475-485.
https://doi.org/10.2118/9297-PA

Seright, R. (1994). Propagation of an aluminum-citrate-HPAM "colloidal-dispersion" gel through Berea sandstone. Report No. PRRC 94-29, New Mexico Petroleum Recovery Research Institute, New Mexico Institute of Mining and Technology. USA.

Skauge, T., Spildo, K. & Skauge, A. (2010). Nano-Sized Particles for EOR. SPE Improved Oil Recovery Symposium, Tulsa, USA. Paper SPE 129933.
https://doi.org/10.2118/129933-MS

Smith, J. (1989). The transition pressure: a quick method for quantifying polyacrylamide gel strength. SPE International Symposium on Oilfield Chemistry, Houston, USA. Paper SPE 18739.
https://doi.org/10.2118/18739-MS

Smith, J. (1995). Performance of 18 polymers in aluminum citrate colloidal dispersion gels. Paper SPE 28989.
https://doi.org/10.2118/28989-MS

Smith, J. (1999). Practical issues with field injection well gel treatments. Paper SPE 55631.
https://doi.org/10.2118/55631-MS

Smith, J. Liu, H. & Dong, Z. (2000). Laboratory studies of in-depth colloidal dispersion gel technology for Daquing Oilfield. SPE/AAPG Western Regional Meeting, Long Beach, USA. Paper SPE 62610.
https://doi.org/10.2118/62610-MS

Sorbie, K. (1991). Polymer improved oil recovery. Glasgow: Blackie and Son.
https://doi.org/10.1007/978-94-011-3044-8

Spildo, K., Skauge, A., Aarra, M. & Tweheyo, M. (2008). A new polymer application for North Sea Reservoirs. SPE/DOE Symposium on Improved Oil Recovery, Tulsa, USA. Paper SPE 113460.
https://doi.org/10.2118/113460-MS

Spildo, K., Skauge, A. & Skauge, T. (2010). Propagation of Colloidal Dispersion Gels (CDG) in laboratory corefloods. SPE Improved Oil Recovery Symposium, Tulsa, USA. Paper SPE 129927.
https://doi.org/10.2118/129927-MS

Sydansk, R. (2005). Polymers, gels, foams, and resins. SPE Petroleum Engineering Handbook, Texas: Sydansk Consulting Services, LLC.

Walsh, M. , Rouse, B., Senol, N., Pope, G. & Lake, L. (1983). Chemical interactions of aluminum-citrate solutions with formation minerals. SPE Oilfield and Geothermal Chemistry Symposium, Denver, USA. Paper SPE 11799.
https://doi.org/10.2118/11799-MS
How to Cite
Castro García, R. H., Maya Toro, G. A., Sandoval Muñoz, J. E., & Cohen Paternina, L. M. (2013). Colloidal dispersion gels (CDG) to improve volumetric sweep efficiency in aterflooding processes. CT&F - Ciencia, Tecnología Y Futuro, 5(3), 61-78. https://doi.org/10.29047/01225383.48

Downloads

Download data is not yet available.
Published
2013-12-15
Section
Scientific and Technological Research Articles

More on this topic

Most read articles by the same author(s)