1H- and 13C-NMR structural characterization of asphaltenes from vacuum residua modified by thermal cracking

  • Juan Carlos Poveda Universidad Industrial de Santander.
  • Daniel Ricardo Molina Universidad Industrial de Santander.
  • Edgar Francisco Pantoja Agreda Corporación para la Investigación de la Corrosión.
Keywords: Asphaltenes, NMR spectroscopy, Thermal cracking

Abstract

1H- and 13C-NMR data were used to characterize asphaltenes and to follow their chemical changes when they were exposed to thermal cracking under different thermal conditions (673, 693 and 713 K), and treatment times (10, 20 and 30 minutes). Samples of asphaltenes were obtained from a Vacuum Residue (VR) of a mixture of Colombian crude oils. Samples were previously characterized by elemental analysis. Since the characterization of the aromatic substructure is important for this work, special attention was given to those regions in the 1H- and 13C-NMR spectra that showed the main changes: p.e. methyl hydrogens -in gamma position or more- to aromatic units HCH3; methyl hydrogens -in beta positions- to aromatics units HCH3; methylene hydrogens -in beta position- to aromatics HCH2; hydrogens -in naphthenic units beta- to aromatics HN; hydrogens -in paraffinic and alpha position naphthenic structures-in - to aromatics HP,N; hydrogens in monoaromatic units HAr; hydrogens in polyaromatics HAr; carbons in methyl groups CCH3; carbons in methyl groups -in alpha position- to aromatics CCH3; protonated aromatic carbons CAr; pericondensed aromatic carbons CAAA; aromatic carbons linked to methyl groups;CAr catacondensed aromatic carbons CAA and aromatic carbons linked to paraffinic or naphthenic structures CAr.

References

Ancheyta, J., Trejo, F. & Rana, M. S. (2009). Hydrocracking and kinetics of asphaltenes. In: Asphaltenes chemical transformation during hydroprocessing of heavy oils. Boca Raton: CRC Press, 329-369.
https://doi.org/10.1201/9781420066319

Andersen, S. I., Oluf Jensen, J. & Speight, J. (2005). X-ray diffraction of subfractions of petroleum asphaltenes. Energy Fuels, 19(6), 2371-2377.
https://doi.org/10.1021/ef050039v

Asaoka, S., Nakata, S., Shiroto, Y. & Takeuchi, C. (1983). Asphaltene cracking in catalytic hydrotreating of heavy oils. 2. Study of changes in asphaltene structure during catalytic hydroprocessing. Ind. Eng. Chem. Process. Des. Dev., 22(2), 242-248.
https://doi.org/10.1021/i200021a013

ASTM Standard D6560-12. Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products, ASTM International, West Conshohocken, PA, 2012

ASTM Standard D5291-10. Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Petroleum Products and Lubricants. ASTM International, West Conshohocken, PA, 2010.

ASTM Standard D5373-08. Test Method for Instrumental Determination of Carbon, Hydrogen, and Nitrogen in Laboratory Samples of Coal. ASTM International, West Conshohocken, PA, 2008.

ASTM Standard D4239-12. Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM International, West Conshohocken, PA, 2012.

Ballard Andrews, A., Guerra, R. E., Mullins, O. C. & Sen, P. N. (2006). Diffusivity of asphaltene olecules by fluorescence correlation spectroscopy. J. Phys. Chem. A, 110(26), 8093-8097.
https://doi.org/10.1021/jp062099n

Brown, J. K. & Ladner, W. R. (1960). A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy II. A comparison with infrared measurement and the conversion to carbon structure. Fuel, 39(1), 87-96.

Butz, T. & Oelert, H. H. (1995). Application of petroleum asphaltenes in cracking under hydrogen. Fuel, 74(11), 1671-1676.
https://doi.org/10.1016/0016-2361(95)00159-3

Cantor, D. M. (1978). Nuclear magnetic resonance spectrometric determination of average molecular structure parameters for coal-derived liquids. Anal. Chem., 50(8), 1185-1187.
https://doi.org/10.1021/ac50030a044

Dickinson, E. M. (1980). Structural comparison of petroleum fractions using proton and 13Cn.m.r. spectroscopy. Fuel, 59(5), 290-294.
https://doi.org/10.1016/0016-2361(80)90211-2

Doan, B. T., Gillet, B., Blondel, B. & Beloiel, J. C. (1995). Analysis of polyaromatics in crude gas oil mixtures: a new strategy using 1H 2D n.m.r. Fuel, 74(12), 1806-1811.
https://doi.org/10.1016/0016-2361(95)80012-7

Dosseh, G., Rousseau, B. & Fuchs, A. H. (1991). Identification of aromatic molecules in intermediate boiling crude oil fractions by 2D n.m.r. spectroscopy. Fuel, 70(5), 641-646.
https://doi.org/10.1016/0016-2361(91)90179-E

Eyssautier, J., Levitz, P., Espinat, D., Jestin, J., Gummel, J., Grillo, I. & Barré L. (2011). Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering. J. Phys. Chem. B., 115(21), 6827-6837.
https://doi.org/10.1021/jp111468d

Gillet, S., Delpuech, J., Valentin, P. & Escalier, J. C. (1980). Optimum conditions for crude oil and petroleum product analysis by carbon-13 nuclear magnetic resonance spectrometry. Anal. Chem., 52(6), 813-817.
https://doi.org/10.1021/ac50056a010

Gupta, P. L., Dogra, P. V., Kuchhal, R. K. & Kumar, P. (1986). Estimation of average structural parameters of petroleum crudes and coal-derived liquids by 13C and 1H n.m.r. Fuel, 65(4), 515-519.
https://doi.org/10.1016/0016-2361(86)90042-6

Hayashitani, M., Bennion, D., Donnelly, J. & Moore, G. (1978). Thermal cracking models for Athabasca oil sand oil. SPE Annual Fall Technical Conference and Exhibition. Houston. SPE-7549.
https://doi.org/10.2118/7549-MS

Hirsch, E. & Altgelt, K. H. (1970). Integrated structural analysis. A method for the determination of average structural parameters of petroleum heavy ends. Anal. Chem., 42(12), 1330-1339.
https://doi.org/10.1021/ac60294a005

Hurtado, P., Gámez, F. & Martínez-Haya, B. (2010). One- and two-step ultraviolet and infrared laser desorption ionization mass spectrometry of asphaltenes. Energy Fuels, 24(11), 6067-6073.
https://doi.org/10.1021/ef101139f

Knight, S. A. (1967) Analysis of aromatic petroleum fractions by means of absorption mode Carbon-13 N.M.R. Spectroscopy. Chem. Ind., 11: 1920-1923.

Majumdar, R. D., Gerken, M., Mikula, R. & Hazendonk, P. (2013) Validation of the Yen-Mullins Model of Athabasca oil-sands asphaltenes using solution-state 1H NMR relaxation and 2D HSQC spectroscopy. Energy Fuels, 27(11), 6528-6537.
https://doi.org/10.1021/ef401412w

Poveda, J. C. & Molina, D. R. (2012). Average molecular parameters of heavy crude oils and their fractions using NMR spectroscopy. J. Petrol. Sci. Eng., 84-85(1), 1-7.
https://doi.org/10.1016/j.petrol.2012.01.005

Rodríguez, R., Hovell, I., de Mello, M. B., Middea, A. & Lopes, A. (2006). Characterization of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modelin and FTIR techniques. Fuel Process. Technol., 87(4), 325-333.
https://doi.org/10.1016/j.fuproc.2005.10.010

Rongbao, L., Zengmin, S. & Bailing, L. (1988). Structural analysis of polycyclic aromatic hydrocarbons derived from petroleum and coal by 13C and 1H-n.m.r. spectroscopy. Fuel, 67(4), 565-569.
https://doi.org/10.1016/0016-2361(88)90355-9

Rousseau, B. & Fuchs, A. H. (1989). Determination of average molecular weights of high-boiling aromatic oil fractions by 13C and 1H nuclear magnetic resonance. Fuel, 68(9), 1158-1165.
https://doi.org/10.1016/0016-2361(89)90188-9

Savage, P. E. & Klein, M. T. (1987). Asphaltene reaction pathways. 2. Pyrolysis of n-pentadecylbenzene. Ind. Eng. Chem. Res., 26(3), 488-494.
https://doi.org/10.1021/ie00063a015

Savage, P. E., Klein, M. T. & Kukes, S. (1985). Asphaltene reaction pathways. 1. Thermolysis. Ind. Eng. Chem. Process Des. Dev., 24(4), 1169-1174.
https://doi.org/10.1021/i200031a046

Väänänen, T., Koskela, H., Hiltunen, Y. & Ala-Korpela, M. (2002). Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures. J. Chem. Inf. Model., 42(6), 1343-1346.
https://doi.org/10.1021/ci0101051

Yasar, M., Trauth, D. M. & Klein, M. T. (2001). Asphaltene and resid pyrolysis. 2. The effect of reaction environment on pathways and selectivities. Energy Fuels, 15(3), 504-509.
https://doi.org/10.1021/ef0000577

Yokoyama, S., Uchino, H., Katoh, T., Sanada, Y. & Yoshida T. (1981). Combination of 13C- and 1H-n.m.r. spectroscopy for structural analyses of neutral, acidic and basic heteroatom compounds in products from coal hydrogenation. Fuel, 60(3), 254-262.
https://doi.org/10.1016/0016-2361(81)90189-7
How to Cite
Poveda, J. C., Molina, D. R., & Pantoja Agreda, E. F. (2014). 1H- and 13C-NMR structural characterization of asphaltenes from vacuum residua modified by thermal cracking. CT&F - Ciencia, Tecnología Y Futuro, 5(4), 49-60. https://doi.org/10.29047/01225383.40

Downloads

Download data is not yet available.
Published
2014-06-15
Section
Scientific and Technological Research Articles

More on this topic