Numerical modeling of oil spills in the Gulf of Morrosquillo, Colombian Caribbean

Keywords: oi spill modelling, Caribbean Sea, fate of the oil spilled, oil weathering, OpenOil


This study encompasses the analysis of oil spills occurred in the Gulf of Morrosquillo during the loading procedures of oil tankers in the Coveñas maritime Terminal, by means of numerical simulation experiments of the trajectories and weathering processes of oil spilled, which occurred under specific wind, waves, and ocean currents conditions. A three-dimensional (3D) modelling system, OpenOil, which is part of the open-source OpenDrift trajectory framework was used to simulate two contingencies occurred in July and August 2014. During each event, different volumes of Vasconia crude oil spilled on the sea surface were simulated. The resulting slicks were subject to wind drift, Stokes drift from wave forcing, and ocean currents transporting the oil spilled towards the coast. Oil weathering effects (evaporation, emulsification, and biodegradation) are included in the analysis. To calculate weathering of the oil, OpenOil interfaces with the latest version of the open source ADIOS oil library. It should be noted that meteorological and ocean conditions contribute to the oil pathways that in both periods forced the oil slick towards the central coast of the Gulf. The wind speed is an important factor contributing to the rapid evaporation rates of the oil spilled in the warm waters of the Caribbean Sea; hence, allowing a gradual increase of the water fraction, which could lead to the formation of tar balls found in the affected coasts in the areas simulated by the model. The implementation of OpenOil to predict the oil fate and weathering processes in the Colombian basin prove to be a valuable tool that should be used in this maritime terminal to improve planning and preparedness in case of an oil spill. The simulations could be enhanced with higher resolution databases.


Keramea, P., Spanoudaki, K., Zodiatis, G., Gikas, G., Sylaios, G. (2021). Oil Spill Modeling: A Critical Review on Current Trends, Perspectives, and Challenges, J. Mar. Sci. Eng., 9, 181. doi:

Singh, A., Asmath, H., Leung Chee, C., & Darsan, J. (2015). Potential oil spill risk from shipping and the implications for management in the Caribbean Sea, Marine Pollution Bulletin, 93(1–2), 217-227, ISSN 0025-326X. doi:

Garay J. (1995). Estudio actual infraestructura de los servicios para manejo de sustancias y residuos líquidos y sólidos provenientes de los buques en los puertos del Caribe colombiano Fase III (Puertos de Turbo-Coveñas-Riohacha/Manaure-Puerto Bolívar/Portete y San Andrés). Informe Final, CIOH. Cartagena de Indias D.T. y C.

Autoridad Nacional de Licencias Ambientales – ANLA. (2014). Concepto técnico de seguimiento No. 11501. 14 octubre de 2014. 81 pp.

Corporación Autónoma Regional de los Valles del Sinú y del San Jorge -CVS. (2014). Informe de visita GGR No. 2014-098. 6 pp.

Reed, M., Turner, C., and Odulo, A. (1994). The role of wind and emulsification in modelling oil spill and surface drifter trajectories, Spill Sci. Technol. B., 1, 143–157. doi:

Drivdal, M., Broström, G., and Christensen, K. H. (2014). Wave induced mixing and transport of buoyant particles: application to the Statfjord A oil spill, Ocean Sci., 10, 977–991. doi:

Röhrs, J., K-F. Dagestad, Asbjørnsen, H., Nordam, T., Skancke, J., Jones, C.E., & Brekke, C. (2018). The effect of vertical mixing on the horizontal drift of oil spills. Ocean Sci., 14, 1581–1601. doi:

Ramírez Hernández, J.G. (2014). First week of oil weathering of Colombian crude oil in the Colombian Caribbean Sea. M.Sc. in Chemical Engineering Thesis. Universidad Nacional de Colombia, Medellín. 109 pp.

ASCE. (1996). State-of-the-Art Review of Modeling Transport and Fate of Oil Spill, Journal of Hydraulic Engineering, vol. 122, no. 11, pp. 594, 609. doi:

Stiver, W., and Mackay, D. (1984). Evaporation rate of spills of hydrocarbons and petroleum mixtures. Environ, Sci. Technol., 18, 834–840. doi:

Dagestad, K.F.; Röhrs, J.; Breivik, Ø.; Ådlandsvik, B. (2018). OpenDrift v1.0: A generic framework for trajectory modelling, Geosci. Model Dev., 11, 1405–1420. doi:

Mishra, A.K.; Kumar, G.S. (2015). Weathering of oil spill: Modelling and analysis, Aquat. Procedia, 4, 435–442. doi:

Mackay, D., Shiu, W.Y., Hossain, K., Stiver, W., McCurdy, D. (1982). Development and Calibration of an Oil Spill Behavior Model; Toronto University (ONTARIO) Department of Chemical Engineering and Applied Chemistry: Toronto, ON, Canada.

Ward, C.P., Sharpless, C.M., Valentine, D.L., French-McCay, D.P., Aeppli, C., White, H.K., Rodgers, R.P., Gosselin, K.M., Nelson, R.K., Reddy, C.M. (2018). Partial photochemical oxidation was a dominant fate of Deepwater Horizon surface oil. Environ, Sci. Technol., 52, 1797–1805. doi:

Jones, C.E., Dagestad, K.-F., Breivik, Ø., Holt, B., Röhrs, J., Christensen, K.H., Espeseth, M.M., Brekke, C., Skrunes, S. (2016). Measurement and modeling of oil slick transport, Journal of Geophysical Research – Oceans, 121(10), 7759–7775. doi:

Hole, L. R., Dagestad, K. F., Röhrs, J., Wettre, C., Kourafalou, V. H., Androulidakis, Y., … & Garcia-Pineda, O. (2019). The DeepWater Horizon Oil Slick: Simulations of River Front Effects and Oil Droplet Size Distribution, Journal of Marine Science and Engineering, 7(10), 329. doi:

Androulidakis, Y., Kourafalou, V., Robert Hole, L., Le Hénaff, M., & Kang, H. (2020). Pathways of Oil Spills from Potential Cuban Offshore Exploration: Influence of Ocean Circulation, Journal of Marine Science and Engineering, 8(7), 535. Doi:

Brekke, C., Espeseth, M. M., Dagestad, K.-F., Röhrs, J., Hole, L. R., & Reigber, A. (2021). Integrated analysis of multisensor datasets and oil drift simulations—a free-floating oil experiment in the open ocean, Journal of Geophysical Research: Oceans, 126, e2020JC016499. doi:

Hole, L. R., de Aguiar V., Dagestad, K-F, Kourafalou V. H., Androulidakis Y., Kangb H., Le Hénaff M., Calzadae A. (2021). Long term simulations of potential oil spills around Cuba, Mar. Pol. Bull., 167. doi:

Li, C.; Miller, J., Wang, J., Koley, S., Katz, J. (2017). Size distribution and dispersion of droplets generated by impingement of breaking waves on oil slicks, J. Geophys. Res. Ocean, 122, 7938–7957. doi:

Visser, A.W. (1997). Using random walk models to simulate the vertical distribution of particles in a turbulent water column, Mar. Ecol. Prog. Ser., 158, 275–281. doi:

Tkalich, P.; Chan, E.S. (2002). Vertical mixing of oil droplets by breaking waves, Mar. Pollut. Bull., 44, 1219–1229. doi:

Hole, L.R.; Dagestad, K.-F.; Röhrs, J.; Wettre, C.; Kourafalou, V.H.; Androulidakis, I.; Le Hénaff, M.; Kang, H.; Garcia-Pineda, O. (2018). Revisiting the DeepWater Horizon spill: High resolution model simulations of effects of oil droplet size distribution and river fronts, Ocean Sci. Discuss. doi:

Lehr, W. Jones, R., Evans, M., Simecek-Beatty, D., Overstreet, R. (2002). Revisions of the ADIOS oil spill model, Environ. Model. Softw., 17, 189–197. doi:

Thrift-Viveros, D.L.; Jones, R.; Boufadel, M. (2015). Development of a new oil biodegradation algorithm for NOAA’s oil spill modelling suite (GNOME/ADIOS). In Proceedings of the 38th AMOP Technical Seminar, Vancouver, BC, Canada, 2–4 June 2015; Environment Canada: Ottawa, ON, Canada, 2015; pp. 143–152.

Lehr, W.J., Overstreet, R., Jones, R., Watabayashi, G. (1992). ADIOS-Automated Data Inquiry for Oil Spills; Environment Canada: Ottawa, ON, Canada.

Overstreet, R., Lewandowski, A., Lehr, W., Jones, R., Simecek-Beatty, D., Calhoun, D. (1995). Sensitivity analysis in oil spill models: Case study using ADIOS. In Proceedings of the International Oil Spill Conference, Long Beach, CA, USA, 27 February–2 March 1995; pp. 898–900. doi:

Lellouche, J.M. O. Legalloudec, C. Regnier, B. Levier, E. Greiner, M. Drevillon. (2019). Quality Information Document (QUID) For Global Sea Physical Analysis and Forecasting Product GLOBAL_ANALYSIS_FORECAST_PHY_001_024. Issue 2.1. Ref: CMEMS-GLO-QUID-001-024. 81 pp.

Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. De Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R.J. Hogan, E. Hólm, M. Janisková, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, J.N. Thépaut. (2020). The ERA5 global reanalysis, Q. J. Royal Meteorol. Soc., 146(730), 1999-2049. doi:

Law-Chune, S., L. Aouf, L. Bruno and A. Dalphinet. (2020). Quality Information Document (QUID) for Global High Resolution Production Centre GLOBAL_REANALYSIS_WAV_001_032. Issue 1.2. Ref: CMEMS-GLO-QUID-001-032. 48 pp.

Breivik, Ø., Bidlot, J-R., and Janssen, P.A.E.M. (2016). A Stokes drift approximation based on the Phillips spectrum, Ocean Modelling, 100, 49-56. doi:

Devis-Morales, A., Montoya-Sánchez R.A., Bernal G. and Osorio A. (2017). Assessment of extreme wind and waves in the Colombian Caribbean Sea for offshore applications, Applied Ocean Research, 69, 10–26. doi:

Payne, J. R. (1982). The chemistry and formation of water-in-oil emulsions and tar balls from the release of petroleum in the marine environment. Washington: National Academy of Sciences.

Thingstad, T., & Pengerud, B. (1983). The formation of chocolate mousse from Statfjord crude oil and seawater, Marine Pollution Bulletin, 14(6), 214–216. doi:

Fingas, M., and Fieldhouse, B. (2009). Studies on crude oil and petroleum product emulsions: water resolution and rheology, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 333(1–3), 67–81. doi:

Fay, J.A. (1971). Physical process in the spread of oil on a water surface, International Oil Spill Conference Proceedings, 1971(1), 463–467. doi:

How to Cite
Devis Morales, A., Rodríguez Rubio, E., & Rincón Martínez, D. (2022). Numerical modeling of oil spills in the Gulf of Morrosquillo, Colombian Caribbean. CT&F - Ciencia, Tecnología Y Futuro, 12(1), 69–83.


Download data is not yet available.
Scientific and Technological Research Articles


Funding data

  • Ecopetrol
    Grant numbers Project SSCPL No. 0410010006
QR Code