Techno-economic assessment of small wind turbines under la Guajira-Colombia resource conditions

  • Juan Pablo Jaramillo-Cardona Universidad Pontificia Bolivariana, Medellín, Colombia
  • Juan Carlos Perafan-Lopez Universidad Pontificia Bolivariana, Medellín, Colombia
  • José Luis Torres-Madroñero Universidad Pontificia Bolivariana, Medellín, Colombia
  • César Nieto-Londoño Universidad Pontificia Bolivariana, Medellín, Colombia
  • Julián Sierra-Pérez Universidad Pontificia Bolivariana, Medellín, Colombia
Keywords: Wind energy, Annual Energy Production, Capacity Factor, Viability Energía eólica, Producción de energía anual, Factor de capacidad, Viabilidad


Hydroelectric plants broadly sustain Colombian electricity demand. However, wind power emerges to improve the Colombian energy matrix and capacity, satisfying the energy demand. Thus, this study evaluates the technical and economic feasibility of projects based on Small Wind Turbines (SWTs), based on the Colombian wind resource availability. Furthermore, due to the Colombian diversity of energy sources, sensitivity to climate changes and a high percentage of non-interconnected territory, the SWTs excels as an off-grid energy system alternative. For this purpose, the annual energy production and the capacity factor of 24 SWT and the wind resource in Puerto Bolívar, La Guajira, are considered. A techno-economic study that includes cash flow analysis and net present value is used to determine economic viability, considering a financing percentage sensitivity analysis. From the results, it can be concluded that an SWT based project increases its profitability by increasing the IRR value and lowering the financing percentage. Further, the best SWT models can be related to a higher capacity factor value based on the economic phase.

Author Biographies

Juan Pablo Jaramillo-Cardona, Universidad Pontificia Bolivariana, Medellín, Colombia

Grupo de Investigación en Ingeniería Aeroespacial

Juan Carlos Perafan-Lopez, Universidad Pontificia Bolivariana, Medellín, Colombia

Grupo de Investigación en Ingeniería Aeroespacial

José Luis Torres-Madroñero, Universidad Pontificia Bolivariana, Medellín, Colombia

Grupo de Investigación en Ingeniería Aeroespacial

César Nieto-Londoño, Universidad Pontificia Bolivariana, Medellín, Colombia

Grupo de Investigación en Ingeniería Aeroespacial.

Grupo de Energía y Termodinámica.

Julián Sierra-Pérez, Universidad Pontificia Bolivariana, Medellín, Colombia

Grupo de Investigación en Ingeniería Aeroespacial.


Nazir, M. S., Bilal, M., Sohail, H. M., Liu, B., Chen, W., & Iqbal, H. M. N. (2020). Impacts of renewable energy atlas: Reaping the benefits of renewables and biodiversity threats. International Journal of Hydrogen Energy, 45(41), 22113–22124. doi:

IDEAM, PNUD, MADS, DNP, & CANCILLERÍA. (2016). Conocer: El primer paso para adaptarse. Guía básica de conceptos sobre el cambio climático. In Tercera Comunicación Nacional de Cambio Climático.

Leggett, L. M. W., & Ball, D. A. (2012). The implication for climate change and peak fossil fuel of the continuation of the current trend in wind and solar energy production. Energy Policy, 41, 610–617. doi:

Sachs, J. D., Woo, W. T., Yoshino, N., & Taghizadeh-Hesary, F. (2019). Importance of Green Finance for Achieving Sustainable Development Goals and Energy Security. Handbook of Green Finance, 1–10. doi:


United Nations Development Programme. (2010). Mainstreaming Climate Change in Colombia: Screening for risks and opportunity (pp. 153–162). 215AD.

Ospina Noreña, J. E., Gay García, C., Conde, A. C., Magaña, V. O., & Sánchez Torres Esqueda, G. (2009). Vulnerability of water resources in the face of potential climate change: Generation of hydroelectric power in Colombia. Atmosfera, 22(3), 229–252.

World Energy Council. (2019). Energy Trilemma Index.

UPME. (2015). Integración de las energías renovables no convencionales en Colombia. In Ministerio de Minas y Energía.

IRENA; International Renewable Energy Agency. (2019). Climate Change and Renewable Energy: National policies and the role of communities, cities and regions (Report to the G20 Climate Sustainability Working Group (CSWG)) (Issue June).

Solaun, K., & Cerdá, E. (2019). Climate change impacts on renewable energy generation. A review of quantitative projections. Renewable and Sustainable Energy Reviews, 116. doi:

Manoj Kumar, N., Chopra, S. S., Chand, A. A., Elavarasan, R. M., & Shafiullah, G. M. (2020). Hybrid renewable energy microgrid for a residential community: A techno-economic and environmental perspective in the context of the SDG7. Sustainability (Switzerland), 12(10), 1–30. doi:

Chu;, Y.-J., & Lam, H.-F. (2019). Comparative study of the performances of a bio-inspired flexible-bladed wind turbine and a rigid-bladed wind turbine in centimeter-scale. Science of the Total Environment, 135577. doi:

WWEA; World Wind Energy Association. (2017). 2017 Summary: Small Wind World Repprt. In WWEA released latest Global Small Wind Statistics.

Superintendencia Delegada para Energía y Gas Combustible. (2018). Zonas No Interconectadas - ZNI Diagnóstico de la prestación del servicio de energía eléctrica 2018 (Issue 1).

Unidad de Planeación Minero Energética; UPME. (2018). Informe de Gestión 2018.

Superintendencia Delegada para Energía y Gas Combustible. (2017). Zonas No Interconectadas - ZNI Diagnóstico de la prestación del servicio de energía eléctrica 2017 (Issue 1).

Torres-Madroñero, J. L., Alvarez-Montoya, J., Restrepo-Montoya, D., Tamayo-Avendaño, J. M., Nieto-Londoño, C., & Sierra-Pérez, J. (2020). Technological and Operational Aspects That Limit Small Wind Turbines Performance. 1–39. doi:

Torres-madroñero, J. L., Nieto-londoño, C. & Sierra-Pérez, J. (2020). Hybrid Energy Systems Sizing for the Colombian Context : A Genetic Algorithm and Particle Swarm. 1–31. doi:

Valencia Ochoa, G., Núñez Alvarez, J., & Vanegas Chamorro, M. (2019). Data set on wind speed, wind direction and wind probability distributions in Puerto Bolivar - Colombia. Data in Brief, 27. doi:

Taghizadeh-Hesary, F., & Yoshino, N. (2020). Sustainable solutions for green financing and investment in renewable energy projects. Energies, 13(4). doi:

Leary, J., Czyrnek-Delêtre, M., Alsop, A., Eales, A., Marandin, L., Org, M., Craig, M., Ortiz, W., Casillas, C., Persson, J., Dienst, C., Brown, E., While, A., Cloke, J., & Latoufis, K. (2020). Finding the niche: A review of market assessment methodologies for rural electrification with small scale wind power. Renewable and Sustainable Energy Reviews, 133(March). doi:

Abohela, I., Hamza, N., & Dudek, S. (2013). Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renewable Energy, 50, 1106–1118. doi:

Shao, M., Han, Z., Sun, J., Xiao, C., Zhang, S., & Zhao, Y. (2020). A review of multi-criteria decision making applications for renewable energy site selection. Renewable Energy, 157, 377–403. doi:

Abdelhady, S., Borello, D., & Santori, S. (2015). Economic Feasibility of Small Wind Turbines for Domestic Consumers in Egypt Based on the New Feed-in Tariff. Energy Procedia, 75, 664–670. doi:

Bukala, J., Damaziak, K., Kroszczynski, K., Malachowski, J., Szafranski, T., Tomaszewski, M., Karimi, H. R., Jozwik, K., Karczewski, M., & Sobczak, K. (2016). Small Wind Turbines: Specification, Design, and Economic Evaluation. Wind Turbines - Design, Control and Applications. doi:

Acosta, J. L., Combe, K., Djokić, S. Ž., & Hernando-Gil, I. (2012). Performance assessment of micro and small-scale wind turbines in urban areas. IEEE Systems Journal, 6(1), 152–163. doi:

Elnaggar, M., Edwan, E., & Ritter, M. (2017). Wind energy potential of Gaza using small wind turbines: A feasibility study. Energies, 10(8). doi:

Rodriguez-Hernandez, O., Martinez, M., Lopez-Villalobos, C., Garcia, H., & Campos-Amezcua, R. (2019). Techno-economic feasibility study of small wind turbines in the Valley of Mexico metropolitan area. Energies, 12(5), 1–26. doi:

Edsand, H. E. (2017). Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context. Technology in Society, 49, 1–15. doi:

Karczewski, M., Baszczynski, P., Wiklak, P., Sobczak, K., & Jozwik, K. (2017). Economic analysis of small wind turbines. Journal of Machine Engineering, 17(3), 112–123.

Micallef, D., & Van Bussel, G. (2018). A review of urban wind energy research: Aerodynamics and other challenges. Energies, 11(9). doi:

Sedaghat, A., Hassanzadeh, A., Jamali, J., Mostafaeipour, A., & Chen, W. H. (2017). Determination of rated wind speed for maximum annual energy production of variable speed wind turbines. Applied Energy, 205(February), 781–789.doi:

Cortes-Pérez, D. M., Sierra-Vargas, F. E., & Arango-gómez, J. E. (2016). Evaluación , predicción y modelación del potencial eólico Assessment , forecasting and modeling of wind potential. 19(3), 167–175.

ABB. (2010). Cuaderno de aplicaciones técnicas. Plantas eólicas. 1–109.

Remer, D. S., & NIeto, A. P. (1995). A compendium and comparison of 25 project evaluation techniques. Part 1: Net present value and rate of return methods. Int. J. Production Economics 42, 42, 79–96.doi:

Eltamaly, A. M., & Mohamed, M. A. (2018). 8 - Optimal Sizing and Designing of Hybrid Renewable Energy Systems in Smart Grid Applications. In I. Yahyaoui (Ed.), Advances in Renewable Energies and Power Technologies (pp. 231–313). Elsevier. doi:

Instituto de Hidrología Meteorología y Estudios Ambientales; IDEAM. (2019). Consulta y Descarga de Datos Hidrometeorológicos.

Castellón Ruiz, P., & Calleja Calatayud, E. (2014). Análisis del precio, coste y rentabilidad de la energía eólica terrestre en el sistema peninsular español (p. 148).

Wineur. (2005). Catalogue of European Urban Wind Turbine Manufacturers.

Ofordile, S. (2013). Low Cost Small Wind Turbine Generators for Developing Countries. Technische Universiteit Delf.

Eckstein, R. H., Lazzarin, T. B., & Barbi, I. (2014). Proposed power and control system for Small Scale Wind Turbines connected to the Grid. IET Conference Publications, 2014(CP651), 1–6. doi:

Enersud. (n.d.-a). TURBINA EÓLICA Gerar 246.


Fortis Wind Energy. (2013). Passaat.

Fortis Wind Energy. (2013). Passaat Wind Turbine, Instruction Manual.

Nheolis. (2009). Nheowind 3D 50.

Wind Energy Solutions, & WES. (2000). WES5 Tulipo.

Barua, S., Hossain, C. A., & Rahman, M. M. (2015). Optimization of grid-tied distributed microgrid system with EV charging facility for the stadiums of Bangladesh. 2nd International Conference on Electrical Engineering and Information and Communication Technology, ICEEiCT 2015, February 2016. doi:

Nheolis. (2009). Nheowind 3D 100.

ENAIR. (n.d.-b). Manual E70.


Iskra. (2008). AT5-1 Advanced Wind Turbine.

Solacity Inc, & Beckers, R. (2012). Eoltec Scirocco E5.6-6, Installation {&} Maintenance Manual.

inc., S. (n.d.). 6 kW Eoltec Scirocco.

Enersud. (n.d.-b). TURBINA EÓLICA VERNE 555.

Fortis Wind Energy. (n.d.). Alizé.

Fortis Wind Energy. (2013). Alizé Wind Turbine.

Lely. (2003). LELY AIRCON 10, Wind turbines.

Windterra. (n.d.). Windterra Eco 1200.

Venco. (n.d.). Venco-Twister-1000-T.

Bedon, G., Castelli, M. R., Paulsen, U. S., Vita, L., & Benini, E. (2013). Aerodynamic optimization and open field testing of a 1KW vertical-axis wind turbine. European Wind Energy Conference and Exhibition, EWEC 2013, 1(March 2016), 82–91.

Windside. (n.d.). WS-4.

van Bussel, G., Mertens, S., Polinder, H., & Sidler, H. F. A. (2004). The development of Turby, a small VAWT for the built environment. March.

Mols, B. (2005). Turby - Sustainable urban wind power from the roof top. 18–22.

Dutton, A., Halliday, J., & Blanch, M. J. (2005). The Feasibility of Building-Mounted/Integrated Wind Turbines (BUWTs): Achieving their potential for carbon emission reductions. Final Report of Carbon Trust Contract 2002-07-028-1-6.

Culotta, S., Franzitta, V., Milone, D., & Lo Giudice, G. M. (2015). Small wind technology diffusion in suburban areas of sicily. Sustainability (Switzerland), 7(9), 12693–12708. doi:

Aeolos. (n.d.-a). Aeolos Wind Turbine 3kW Specification.

Aeolos. (n.d.-b). Vertical Wind Turbine Brochure, Aeolos-V 3kW.

Ropatec. (n.d.). WindRotor WRE.060.

R., R. C., Amado, D. A. C., & A., Y. C. (2020). Tasa de descuento: aspectos relevantes para el licenciamiento ambiental en Colombia. Revista Desarrollo y Sociedad, 84(1), 9–53. doi:

Battisti, L., Benini, E., Brighenti, A., Dell’Anna, S., & Raciti Castelli, M. (2018). Small wind turbine effectiveness in the urban environment. Renewable Energy, 129, 102–113. doi:

Abshagen, J., Cliffe, K. A., Langenberg, J., Mullin, T., Pfister, G., & Tavener, S. J. (2004). Original article Taylor – Couette flow with independently rotating end plates. Theoretical and Computational Fluid Dynamics, 129–136. doi:

How to Cite
Jaramillo-Cardona, J. P. ., Perafan-Lopez, J. C. ., Torres-Madroñero, J. L. ., Nieto-Londoño, C., & Sierra-Pérez, J. . (2022). Techno-economic assessment of small wind turbines under la Guajira-Colombia resource conditions. CT&F - Ciencia, Tecnología Y Futuro, 12(1), 45–56.


Download data is not yet available.
Scientific and Technological Research Articles

Funding data

Crossref Cited-by logo