Obtaining high value products in a biorefinery topology using microalgae.

  • Ángel Darío González Delgado Universidad de San Buenaventura.
  • Andrés Fernando Barajas Solano Universidad Industrial de Santander.
  • Viatcheslav Kafarov Universidad Industrial de Santander.
Keywords: Biomass, Biofuels, Chlorophyll, Production


Microalgae biomass presents high potential for third-generation biofuel production. It also contains other products whose recovery can contribute to the sustainability of linear biofuel production chains. These substances are currently treated as impurities that are extracted along with lipids, causing a negative influence on the biodiesel production process.  Therefore, the separation of these substances has a dual benefit.  On one hand, high value products are obtained, and on the other, purer oil is produced for the generation of biofuel, approaching the biorefinery concept.

This study proposes the incorporation of a chlorophyll production stage in a biorefinery topology. The variables affecting the separation of these components are evaluated along with the most appropriate location of the stage in the process diagram. The best conditions for the separation of pigments from lipids are given at a biomass/solvent ratio of 1/10 g/mL, a temperature of 45°C and a time of 4 h, where the biomass/solvent ratio is the most influential variable.  The highest efficiency for obtaining high-value products is achieved by incorporating the process before the biomass drying stage.


Amaro, H., Guedes, C. & Malcata, X. (2011). Advances and perspectives in using microalgae to produce biodiesel, Appl. Energy, 88(10), 3402-3410.

Archanaa, S., Moise, S. & Suraishkumar, G. (2012). Chlorophyll interference in microalgal lipid quantification through the Bligh and Dyer method. Biomass Bioenergy, 46: 805-808.

Chisti, Y. (2007). Biodiesel from microalgae. Biot. Adv., 25(3), 294-306.

EPA. (2011). Inventory of US greenhouse gas emissions and sinks: 1990-2009 (April 2011), US EPA #430-R-11-005.

Ehimen, E. A., Sun, Z. F. & Carrington, C. G. (2010). Variables affecting the in situ transesterification of microalgae lipids. Fuel, 89(3), 677-684.

Garzón-Sanabria, A. J., Davis, R. T. & Nikolov, Z. (2012). Harvesting Nannochloris oculata by organic electrolyte flocculation: Effect of initial cell density, ionic strength, coagulant dogase, and media pH. Bioresource Technol., 118(1), 418-424.

González-Delgado, A. D. & Kafarov, V. (2011). Microalgae based biorefinery: Issues to consider. CT&F - Ciencia Tecnología y Futuro, 4(4), 5-21.

González-Delgado, A. D. & Kafarov, V. (2012). Design and adjustment of coupled microalgae oil extraction methods for the development of a topology of biorefinery. Prospectiva, 10(1), 113-123.

Halim, R., Danquah, M. K. & Webley, P. A. (2012). Extraction of oil from microalgae for biodiesel production: A review. Biot. Adv., 30(3), 709-732.

Handler, R. M., Canter, C. E., Kalnes, T. N., Lupton, F. S., Kholiqov, O., Shonnard, D. R. & Blowers, P. (2012). Evaluation of environmental impacts from microalgae cul- tivation in open-air raceway ponds: Analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Research, 1(1), 83-92.

Mata, T. M., Martins, A. A. & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy. Rev., 14(1), 217-232.

Ofori-Boateng, C., Teong, L. K. & JitKang, L. (2012). Feasibility study of microalgal and jatropha biodiesel produc- tion plants: exergy analysis approach. Appl. Therm. Eng., 36(1), 141-151.

Pegallapati, A. K., Arudchelvam, Y. & Nirmalakhandan, N. (2012). Energy-efficient photobioreactor configuration for algal biomass production. Bioresource Technol., 126(1), 266-273.

Peralta-Ruiz, Y., González-Delgado, A. D. & Kafarov, V. (2013). Evaluation of alternatives for microalgae oil extraction based on exergy analysis. Appl. Energ., 101: 226-236.

Pragya, N., Pandey, K. K. & Sahoo, P. K. (2013). A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew. Sustain. Energy. Rev., 24: 159-171.

Ramírez, L. & Olvera, R. (2006). Uso tradicional y actual de Spirulina sp. (Arthrospira sp.). Interciencia. 31(9), 657-663.

Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and applied phycology. Ames: Blackwell Science.

Schumann, R., Häubner, N., Klausch, S. & Karsten, U. (2005). Chlorophyll extraction methods for the quantification of green microalgae colonizing building facades. Int. Biode- ter. Biodegr., 555(3), 213-222.

Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V. & Kalil, S. J. (2007). Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresource Technol., 98(8), 1629-1634.

Singh, P. & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progr. Energ. Combust. Sci., 37(1), 52-68.

Tverberg, G. E. (2012). Oil supply limits and the continuing financial crisis. Energy, 37(1), 27-34.

Wijffels, R., Barbosa, M. & Eppink, M. (2010). Microalgae for the production of bulk chemicals and biofuels. Biofuels, Bioprod. Biorefin., 4(3), 287-295.
How to Cite
González Delgado, Ángel D., Barajas Solano, A. F., & Kafarov, V. (2013). Obtaining high value products in a biorefinery topology using microalgae. CT&F - Ciencia, Tecnología Y Futuro, 5(3), 95-106. https://doi.org/10.29047/01225383.50


Download data is not yet available.
Scientific and Technological Research Articles

More on this topic

Most read articles by the same author(s)