Planning model for natural gas commercialization with legal and operational constraints

Keywords: natural gas, value chain, NLP, lexicographic method, multi-objective optimization, Colombia


This paper presents a mathematical model for planning optimization of the gas supply chain of a company that is a producer, trader, and gas consumer for its operations, but does not transport it, according to the guidelines of the Colombian government. The model optimizes the profit of the modeled company based on (i) the availability and demand of the modeled company, (ii) public information from other gas-producing and consuming companies, and (iii) demand-serving priorities. The model is formulated as a single-period non-linear programming (NLP) model that optimizes the natural gas allocations and the total profit of the company considering production, transportation, prioritization, and economic constraints. Due to prioritization constraints, the model is formulated as a optimization problem that is solved with the lexicographical method. The proposed model stands out for its ability to be used as a decision support tool for natural gas supply planners in Colombia due to its considerations of the technical, legal, contractual, and regulatory aspects of natural gas production in the country.



ANH (2013). Informe de Gestión 2013. Agencia Nacional de Hidrocarburos.

ANH (2023). INFORME DE Gestión 2022. Agencia Nacional de Hidrocarburos.

Becerra-Fernandez, M., Cosenz, F., & Dyner, I. (2020). Modeling the natural gas supply chain for sustainable growth policy. Energy, 205, 118018.

Contesse, L., Ferrer, J., & Maturana, S. (2005). A mixed-integer programming model for gas purchase and transportation. Annals of Operations Research, 139(1), 39-63.

CREG. (8 de Marzo de 2007). Especificaciones de calidad de gas natural en el punto de entrada del sistema de transporte. Comisión de Regulación de Energía y Gas.$FILE/D-017%20CALIDAD%20EN%20TRANSPORTE%20DE%20GAS.pdf

CREG. (14 de Agosto de 2017). Resolución No. 114 de 2017. Comisión de Regulación de Energía y Gas.

Dara, S., Abdulqader, H., Yasser, A., & Berrouk, A. (2020). Countrywide optimization of natural gas supply chain: From wells to consumers. Energy, 196, 117125.

Devine, M. T., Gleeson, J. P., Kinsella, J., & Ramsey, D. M. (2014). A Rolling Optimisation Model of the UK Natural Gas Market. Networks and Spatial Economics, 14(2), 209-244.

Egging, R., Holz, F., & Gabriel, S. (2010). The World Gas Model: A multi-period mixed complementarity model for the global natural gas market. Energy, 35(10), 4016-4029.

Grossmann, I. E. (2005). Enterprise‐wide optimization: A new frontier in process systems engineering. AIChE Journal, 51(7), 1846-1857.

Grossmann, I. E. (2012). Advances in mathematical programming models for enterprise-wide optimization. Computers & Chemical Engineering, 47, 2-18.

Hamedi, M., Zanjirani Farahani, R., Moattar Husseini, M., & Reza Esmaeilian, G. (2009). A distribution planning model for natural gas supply chain: A case study. Energy Policy, 37(3), 799-812.

IGU, I. (2018). The Role of Natural Gas in the Energy Transition. 27th Word Gas Conference. Washington DC.

Ley 401 de 1997. Por la cual se crea la Empresa Colombiana de Gas, Ecogas, el viceministerio de Hidrocarburos y se dictan otras disposiciones. Congreso de Colombia. 26 de agosto de 1997. D.O No. 52564.

Liu, C., Shahidehpour, M., Fu, Y., & Li, Z. (2009). Security-constrained unit commitment with natural gas transmission constraints. EEE Transactions on Power Systems, 24(3), 1523-1536.

Mikolajková, M., Haikarainen, C., Saxén, H., & Pettersson, F. (2017). Optimization of a natural gas distribution network with potential future extensions. Energy, 125, 848-859.

Olaya, Y., & Dyner, I. (2005). Modelling for policy assessment in the natural gas industry. Journal of the Operational Research Society, 56, 1122-1131.

O'Neill, R. P., Williard, M., Wilkins, B., & Pike, R. (1979). A mathematical programming model for allocation of natural gas. Operations Research, 27(5), 857-873.

Ríos-Mercado, R. Z., & Borraz-Sánchez, C. (2015). Optimization problems in natural gas transportation systems: A state-of-the-art review. Applied Energy, 147, 536-555.

Selot, A., Kuok, L. K., Robinson, M., Mason, T. L., & Barton, P. I. (2008). A short‐term operational planning model for natural gas production systems. AIChE Journal, 54(2), 495-515.

Singiresu S., R. (2009). Engineering Optimization Theory and Practice. Canada: John Wiley & Sons, Inc.

Üster, H., & Dilaveroğlu, Ş. (2014). Optimization for design and operation of natural gas transmission networks. Applied Energy, 133, 56-69.

Villada, J., & Olaya, Y. (2013). A simulation approach for analysis of short-term security of natural gas supply in Colombia. Energy Policy, 53, 11-26.

Watts, N., Amann, M., Arnell, N., Ayeb-Karlsson, S., Belesova, K., Boykoff, M., ... & Montgomery, H. (2019). The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate. The Lancet, 394(10211), 1836-1878.

Zarei, J., & Amin-Naseri, M. R. (2020). A sustainable multi-objective framework for designing and planning the supply chain of natural gas components. Journal of Cleaner Production, 259, 120649.

Zarei, J., & Mohammad Reza, A.-N. (2019). An integrated optimization model for natural gas supply chain. Energy, 185, 1114-1130.

How to Cite
Roa Duarte, C. E., García Saravia, R. C., Palomares Quintero, J. C., Medina, O. A., Gámez, J. M., Yaya Bravo, J. A., & Hoyos Marín, L. J. (2023). Planning model for natural gas commercialization with legal and operational constraints. CT&F - Ciencia, Tecnología Y Futuro, 13(1), 87–102.


Download data is not yet available.
Scientific and Technological Research Articles


Crossref Cited-by logo
QR Code