Mass balance of Neogene sediments in the Colombia basin relationship with the evolution of the Magdalena and Cauca River basins

Keywords: Mass balance, Colombia Basin, Magdalena River, Cauca River, Provenance analysis

Abstract

The Colombia basin contains large volumes of sediment accumulated during the last 17 My. The use of isochore maps, exploratory wells, micropaleontological and geochronological dates has enabled us to estimate the volumes of sediment and accumulation rates in this basin. The analysis of source of sediments and exhumation data from the Northern Andes of South America led to the definition of areas and thicknesses of material eroded during the Neogene - Quaternary, to obtain volumes or material eroded from the continent that can be correlated with sediment volumes accumulated in the Colombia Basin. The analyzed sediment volumes suggest that during the last 17 My ~72.06x1015 Tons accumulated in the Colombia Basin, while ~ 7.16x1013 Tons accumulated in the continental catchment areas. The sedimentation in the Colombian Basin has occurred at variable rates, with values ranging from 55 MTons/My to 295 MTons/My, with a peak of 803 MTons/My in the early Pleistocene (between 2.4 and 2.2 Ma). The evaluation between the total volumes of sediment accumulated in the offshore and onshore, suggests that in the continental part of the basin less than 4% of the total volume of eroded sediment is trapped and, therefore, the behavior of the accumulation rates calculated in the offshore directly reflect the relief evolution of South America’s Northern Andes. It seems, at large, that the lithospheric convergence rates and subduction angle (South America vs Nazca and Meso Atlantic opening) have controlled the regional exhumation of the Northern Andes, with the exception of the Pleistocene high sedimentation event, which seems to coincide with local events such as the collision of the Panama Arch against Western Antioquia. It may be concluded that thanks to this collision, drainage systems such as those of the Magdalena and Cauca rivers were modified, which resulted in the formation of the Magdalena Submarine Fan.

Author Biographies

Daniel Rincon Martinez, ECOPETROL-ICP

Profesional Integral de Innovación y TecDpto Desarroll y Transfer Tecno Upstream

Nestor Moreno Gómez, ECOPETROL-ICP

Geólogo  Depto de Áreas de Conocimiento Upstream

Pedro D. Gómez Gutierrez, ECOPETROL - ICP

Geólogo Integral Dpto de Áreas de Conocimiento Upstream

References

W. C. Pitman and X. Golovchenko, “The effect of sealevel change on the shelfedge and slope of passive margins.,” The shelfbreak: critical interface on continental margins, pp. 41–58, 1983. https://doi.org/10.2110/pec.83.06.0041.

J. P. M. Syvitski and J. D. Milliman, “Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean,” Journal of Geology, 2007. https://doi.org/10.1086/509246.

S. Cohen, A. J. Kettner, J. P. M. Syvitski, and B. M. Fekete, “WBMsed, a distributed global-scale riverine sediment flux model: Model description and validation,” Computers and Geosciences, 201. https://doi.org/10.1016/j.cageo.2011.08.011 .

O. Slaymaker, “The sediment budget as conceptual framework and management tool,” in The Interactions between Sediments and Water, 2003. https://doi.org/10.1007/978-94-017-3366-3_12

J. D. Milliman and J. P. M. Syvitski, “Geomorphic/ tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers,” Journal of Geology, 1992. https://doi.org/10.1086/629606.

N. Hovius et al., “Prolonged seismically induced erosion and the mass balance of a large earthquake,” Earth and Planetary Science Letters, 2011. https://doi.org/10.1016/j.epsl.2011.02.005

P. D. Clift, “Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean,” Earth and Planetary Science Letters, 2006. https://doi.org/10.1016/j.epsl.2005.11.028 .

F. Métivier and Y. Gaudemer, “Stability of output fluxes of large rivers in south and east Asia during the last 2 million years: Implications on floodplain processes,” Basin Research. 1999. https://doi.org/10.1046/j.1365- 2117.1999.00101.x.

J. D. Phillips and B. Gomez, “Controls on sediment export from the Waipaoa River basin, New Zealand,” Basin Research, 2007. https://doi.org/10.1111/j.1365-2117.2007.00325.x

W. E. Galloway, T. L. Whiteaker, and P. Ganey-Curry, “History of Cenozoic North American drainage basin evolution, sediment yield, and accumulation in the Gulf of Mexico basin,” Geosphere, 2011. https://doi.org/10.1130/GES00647.1

P. Molnar, “Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates?,” Annual Review of Earth and Planetary Sciences. pp. 67–89, 2004. https://doi.org/10.1146/annurev.earth.32.091003.143456 .

P. Molnar and P. England, “Late Cenozoic uplift of mountain ranges and global climate change: Chicken or egg?,” Nature. 1990. https://doi.org/10.1038/346029a0.

W. W. Hay, J. L. Sloan, and C. N. Wold, “Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction,” J. Geophys. Res., vol. 93, pp. 14933–14940, 1988. https://doi.org/10.1029/JB093iB12p14933 .

W. W. Hay, C. A. Shaw, and C. N. Wold, “Massbalanced paleogeographic reconstructions,” Geol. Rundschau, vol. 78, pp. 207–242, 1989. https://doi.org/10.1007/BF01988362

A. Elverhøi, R. L. B. Hooke, and A. Solheim, “Late cenozoic erosion and sediment yield from the Svalbard-Barents sea region: Implications for understanding erosion of glacierized basins,” Quaternary Science Reviews, 1998. https://doi.org/10.1016/S0277-3791(97)00070-X

B. Hallet, L. Hunter, and J. Bogen, “Rates of erosion and sediment evacuation by glaciers: A review of field data and their implications,” Global and Planetary Change, 1996. https://doi.org/10.1016/0921-8181(95)00021-6

J. L. Grimaud, D. Rouby, D. Chardon, and A. Beauvais, “Cenozoic sediment budget of West Africa and the Niger delta,” Basin Research, 2018. https://doi.org/10.1111/ bre.12248.

G. J. Weltje and H. von Eynatten, “Quantitative provenance analysis of sediments: Review and outlook,” Sedimentary Geology, 2004. https://doi.org/10.1016/j. sedgeo.2004.05.007.

T. A. Ehlers and K. A. Farley, “Apatite (U-Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes,” Earth and Planetary Science Letters, 2003. https://doi.org/10.1016/ S0012-821X(02)01069-5.

P. Vermeesch and Y. Tian, “Thermal history modelling: HeFTy vs. QTQt,” Earth-Science Reviews. 2014. https://doi.org/10.1016/j.earscirev.2014.09.010.

A. R. Duvall, M. K. Clark, B. Avdeev, K. A. Farley, and Z. Chen, “Widespread late Cenozoic increase in erosion rates across the interior of eastern Tibet constrained by detrital low-temperature thermochronometry,” Tectonics, 2012. https://doi.org/10.1029/2011TC002969.

Y. Deniaud, P. Baby, C. Basile, M. Ordoñez, G. Montenegro, and G. Mascle, “Ouverture et evolution tectono-sedimentaire du golfe de Guayaquil: Bassin d’avant-arc neogene et quaternaire du Sud des Andes equatoriennes,” Comptes Rendus de l’Academie de Sciences - Serie IIa: Sciences de la Terre et des Planetes, 1999. https://doi.org/10.1016/S1251-8050(99)80094-9.

M. Jolivet, “Mesozoic tectonic and topographic evolution of Central Asia and Tibet: A preliminary synthesis,” in Geological Society Special Publication, 2017. https://doi.org/10.1144/SP427.2.

E. López-Ramos, “Origin of a double forearc basin: The example of the Tumaco-Manglares basin, northwestern South America,” Ciencia, Tecnología y Futuro, vol. 10, no. 1, pp. 67–92, 2020. https://doi.org/10.29047/01225383.161 .

J. D. Restrepo and B. Kjerfve, “The Pacific and Caribbean Rivers of Colombia: Water Discharge, Sediment Transport and Dissolved Loads,” in Environmental Geochemistry in Tropical and Subtropical Environments, 2004, pp. 169–187. https://doi.org/10.1007/978-3-662- 07060-4_14.

J. D. Restrepo, A. J. Kettner, and J. P. M. Syvitski, “Recent deforestation causes rapid increase in river sediment load in the Colombian Andes,” Anthropocene, 2015. https://doi.org/10.1016/j.ancene.2015.09.001.

F. Velásquez, A. Cardona, and C. Montes, “Caracterización de minerales pesados en sedimentos activos de la cuenca del río Magdalena, Colombia: implicaciones para el análisis de procedencia en el registro fluvial,” Boletín de Geología, 2019. https://doi.org/10.18273/revbol.v41n2-2019008.

B. K. Horton et al., “Resolving uplift of the northern Andes using detrital zircon age signatures,” GSA Today, 2010. https://doi.org/10.1130/GSATG76A.1.

J. S. Jaramillo, A. Cardona, G. Monsalve, V. Valencia, and S. León, “Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism,” Lithos, 2019. https://doi.org/10.1016/j.lithos.2019.02.017 .

M. Lara, A. M. Salazar-Franco, and J. C. SilvaTamayo, “Provenance of the Cenozoic siliciclastic intramontane Amagá Formation: Implications for the early Miocene collision between Central and South America,” Sedimentary Geology, 2018. https://doi.org/10.1016/j.sedgeo.2018.06.003

A. Mora et al., “Climatic forcing of asymmetric orogenic evolution in the Eastern Cordillera of Colombia,” Bulletin of the Geological Society of America, 2008. https://doi.org/10.1130/B26186.1

D. Villagómez et al., “Vertical tectonics at a continental crust-oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia,” Tectonics, 2011. https://doi.org/10.1029/2010TC002835

J. Gómez, N. E. Montes, F. A. Alcárcel, and J. E. Ceballos, “Catalogo de dataciones radiométricas de Colombia en ArcGIS y Google Earth,” in Compilando la Geología de Colombia: Una visión a 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 33, J. Gómez and M. F. Almanza, Eds. Bogotá: Servicio Geológico Colombiano, 2015, pp. 63–419.

J. F. Cerón, J. N. Kellogg, and G. Y. Ojeda, “Basement configuation fo the northwestern southamericacaribbean margin from recent geophysical data,” CT y F - Ciencia, Tecnologia y Futuro, 3(3), 25-50.2007.

E. A. Toto and J. N. Kellogg, “Structure of the SinuSan Jacinto fold belt - an active accretionary prism in northern Colombia,” Journal of South American Earth Sciences, 1992. https://doi.org/10.1016/0895-9811(92)90039-2

J. F. Ceron-Abril, “Crustal structure of the Colombian Caribbean Basin and margins.,” PhD Thesis., 2008. [Online]. Available: https://ui.adsabs.harvard.edu/abs/2008PhDT.......208C

J. N. Kellogg and W. E. Bonini, “Subduction of the Caribbean Plate and basement uplifts in the overriding South American Plate,” Tectonics, 1982. https://doi.org/10.1029/TC001i003p00251 .

N. A. Breen, “Structural effect of Magdalena fan deposition on the northern Colombia convergent margin,” Geology, 1989. https://doi.org/10.1130/0091-7613(1989)017<0034:SEOMFD>2.3.CO;2

H. Duque-Caro, “Major structural elements and evolution of northwestern Colombia”. In Watkins, J.S., Montadert, L, & Dickerson, P.W. Memoir 29: Geological and Geophysical Investigations of Continental Margins. 1979. AAPG. https://doi.org/10.1306/M29405C22

A. F. Cadena, G. Romero, and R. Slatt, “Application of Stratigraphic Grade Concepts to Understand Basinfill Processes and Deposits in an Active Margin Setting, Magdalena Submarine Fan and Associated Fold-and-Thrust Belts, Offshore Colombia,” in Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, 2016. https://doi.org/10.1306/13531942M1083646

F. Corredor, J. Shaw, and T. Villamil, “Complex Imbricate Systems In The Southern Caribbean Basin, Offshore Northern Colombia: Advanced Structural And Stratigraphic Analysis, And Implications For Regional Oil Exploration,” in VIII Simposio Bolivariano - Exploración Petrolera en Cuencas Subandinas, 2003, pp. 46–56. https://doi.org/10.3997/2214-4609-pdb.33.Paper5.

R. Werner, K. Hoernle, and F. Hauff, “CLIP – Origin of the Caribbean Large Igneous Province (CLIP) in connection with the geodynamic evolution of the Central Caribbean ,” Meteor Berichte, 2011. [Online]. Available: https://oceanrep.geomar.de/13988/1/Fahrtbericht_M81- 2A_B.pdf

N. T. Edgar et al., “Site 153,” in Initial Reports of the Deep Sea Drilling Project, 15, 1973. https://doi.org/10.2973/dsdp.proc.15.108.1973

N. T. Edgar, J. B. Saunders, and H. R. Hopkins, “Geology of the Aruba Gap Abyssal Plain near DSDP Site 153,” in Initial Reports of the Deep Sea Drilling Project, 15, 1973. https://doi.org/10.2973/dsdp.proc.15.135.1973.

H. Sigurdsson, R. M. Leckie, G. D. Acton, and E. Al., “Site 999,” College Station TX, 1997. https://doi.org/10.2973/odp.proc.ir.165.104.1997

J. Ewing, J. Antoine, and M. Ewing, “Geophysical measurements in the western Caribbean Sea and in the Gulf of Mexico,” Journal of Geophysical Research, 1960. https://doi.org/10.1029/JZ065i012p04087

S. Romito and P. Mann, “Tectonic terranes underlying the present-day Caribbean plate:Their tectonic origin, sedimentary thickness, subsidence histories, and regional controls on hydrocarbon resources,” Geological Society, London, Special Publications, 2020. https://doi.org/10.1144/SP504-2019-221

Y. Basabe, “Sedimentary megasequences of Colombian basin, offshore Colombia,” M.S. thesis. University of Arizona. Arizona, 2018. [Online]. Available: https://repository.arizona.edu/handle/10150/631927

W. Martinez et al., “Tectono-stratigraphic Evolution of the Chichibacoa–Rancherias Basin Offshore Colombia,” in Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, 2016. https://doi.org/10.1306/13531954M1083657

C. Ruiz, N. Davis, A. Price, and D. Carvajal, “Structure and Tectonic Evolution of the South Caribbean Basin, Southern Offshore Colombia: a Progressive Accreationary System,” 2000. https://doi.org/10.3997/2214-4609-pdb.118.023eng

J. Sanchez, P. Mann, L. C. Carvajal-Arenas, and R. Bernal-Olaya, “Regional transect across the western Caribbean Sea based on integration of geologic, seismic reflection, gravity, and magnetic data,” AAPG Bulletin, 2019. https://doi.org/10.1306/05111816516.

R. Bernal-Olaya, P. Mann, and C. A. Vargas, “Earthquake, Tomographic, Seismic Reflection, and Gravity Evidence for a Shallowly Dipping Subduction Zone beneath the Caribbean Margin of Northwestern Colombia,” in Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, 2016. https://doi.org/10.1306/13531939M1083642.

E. López, “Deep crust models of Colombia”. República de Colombia. Ministerio de Minas y Energía. Instituto Colombiano de Geología y Minería. INGEOMINAS. Bogotá DC. 43p.2.004.

O. J. Perez, M. Jaimes, and E. Garciacaro, “Microseismicity evidence for subduction of the Caribbean plate beneath the South American plate in northwestern Venezuela,” J. Geophys. Res., vol. 102, pp. 17875–17882, 1997. https://doi.org/10.1029/96JB03174.

J. N. Kellogg, G. B. F. Camelio, and H. Mora-Páez, “Cenozoic tectonic evolution of the North Andes with constraints from volcanic ages, seismic reflection, and satellite geodesy,” in Andean Tectonics, 2019. https://doi.org/10.1016/B978-0-12-816009-1.00006-X

H. Mora-Páez et al., “Crustal deformation in the northern Andes – A new GPS velocity field,” Journal of South American Earth Sciences, 2019. https://doi. org/10.1016/j.jsames.2018.11.002.

A. Ortiz-Karpf, D. M. Hodgson, C. A. L. Jackson, and W. D. McCaffrey, “Bathymetric and substrate controls on submarine mass-transport emplacement processes and channel-levee complex evolution,” Basin Research, 2018. https://doi.org/10.1111/bre.12208.

Shepard, F. P., Dill, R. F., & Heezen, B. C. “Diapirc intrusions in Foreset slope sediments off Magdalena delta, Colombia”. AAPG Bulletin, 52(11), 2197-2207. [Online]. Available: https://archives.datapages.com/data/bulletns/1968-70/images/pg/00520011/2150/21970.pdf

J. Naranjo-Vesga et al., “Regional controls in the distribution and morphometry of deep-water gravitational deposits along a convergent tectonic margin. Southern caribbean of Colombia,” Marine and Petroleum Geology, vol. 121, p. 104639, Nov. 2020. https://doi.org/10.1016/j.marpetgeo.2020.104639.

J. Idárraga-García, D. G. Masson, J. García, H. León, and C. A. Vargas, “Architecture and development of the Magdalena Submarine Fan (southwestern Caribbean),” Marine Geology, 2019. https://doi.org/10.1016/j. margeo.2019.05.005 .

C. Sánchez and A. Permanyer, “Origin and alteration of oils and oil seeps from the Sinú-San Jacinto Basin, Colombia,” Organic Geochemistry, 2006. https://doi.org/10.1016/j.orggeochem.2006.07.012 .

J. E. Cortes, R. Aguilera, O. Wilches, J. F. Osorno, and S. I. Cortes, “Organic geochemical insights from oil seeps, tars, rocks, and mud volcanoes on the petroleum systems of the Sinú-San Jacinto basin, Northwestern, Colombia,” Journal of South American Earth Sciences, 2018. https://doi.org/10.1016/j.jsames.2018.06.007

A. Kammer, A. Piraquive, C. Gomez, A. Mora, and A. Velasquez, “Structural Styles of the Eastern Cordillera of Colombia,” 2020, pp. 37, 41 p. https://doi.org/10.32685/pub.esp.37.2019.06

J. J. Flynn, J. Guerrero, and C. C. Swisher, “Geochronology of the Honda Group,” in Vertebrate Paleontology in the Neotropics - The Miocene Fauna of La Venta, Colombia, R. F. Kay and E. Al., Eds. Smithsonian Institution, 1997, pp. 44–59.

J. Guerrero, “Stratigraphy, Sedimentar y Environments, and the Miocene Uplift of the Colombian Andes,” in Vertebrate Paleontology in the Neotropics - The Miocene Fauna of La Venta, Colombia, R. F. Kay, Ed. Smithsonian, 1997, pp. 15–43.

D. Ramírez, A. López Cuevas, G. Sierra Lopera, and G. Toro Villegas, “Edad y provenincia de las rocas volcánico sedimentarias de la Formación Combia en el suroccidente antiqueño Colombia,” Boletín de Ciencias de la Tierra, (19), 9-26.2006.

G. M. Sierra and M. I. Marín-Cerón, “Geology and hydrocarbon potential Amagá, Cauca and Patía basins,” in Petroleum Geology of Colombia., F. Cediel, Ed. Bogotá: ANH, 2011, p. 101.

J. C. Silva Tamayo, G. M. Sierra, and L. G. Correa, “Tectonic and climate driven fluctuations in the stratigraphic base level of a Cenozoic continental coal basin, northwestern Andes,” Journal of South American Earth Sciences, 2008. https://doi.org/10.1016/j. jsames.2008.02.001 .

J. Mora et al., “Structure and age of the Lower Magdalena Valley basin basement, northern Colombia: New reflection-seismic and U-Pb-Hf insights into the termination of the central andes against the Caribbean basin,” Journal of South American Earth Sciences, 2017. https://doi.org/10.1016/j.jsames.2017.01.001.

Geotec Ltda., “Geología de los cinturones Sinú-San Jacinto: 50 Puerto Escondido, 51 Lorica, 59 Mulatos, 60 Canalete, 61 Montería, 69 Necoclí, 70 San Pedro de Urabá, 71 Planeta Rica, 79 Turbo, 80 Tierralta. Escala 1:100.000”. Memoria Explicativa. Ingeominas. 2003.

M. Lara et al., “Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America?,” Journal of South American Earth Sciences, vol. 45, pp. 24–41, 2013. https://doi.org/10.1016/j.jsames.2012.12.006

R. Aguilera, “Geology and hydrocarbon potential Sinú and San Jacinto basins”. In Cediel, F. (editors), Petroleum Geology of Colombia Volume 12. ANH. Bogotá.2.001.

J. Mora, O. Oncken, and E. Al., “Chapter 2,” in The Geology of Colombia, Volume 3 Paleogene – Neogene Publicaciones Geológicas Especiales 37, J. Gómez and D. Mateus, Eds. Bogotá: Servicio Geológico Colombiano, 2019, pp. 21–66. https://doi.org/10.32685/pub.esp.37.2019.02

F. Laverde, “The Caribbean Basin of Colombia, a composite Cenozoic accretionary wedge with underexplored hydrocarbon potential,” VII Simposio Bolivariano - Exploración Petrolera en las Cuencas Subandinas, pp. 394–410, 2000. https://doi.org/10.3997/2214-4609-pdb.118.027eng

I. Martínez and E. López, “El sistema fluvial del Magdalena durante el Plioceno-Cuaternario: contexto tectónico y escenario paleoclimático,” in Los sedimentos del Río Magdalena: reflejo de la crisis ambiental, Primera., J. D. Restrepo, Ed. Universidad EAFIT, 2005, pp. 101–112.

J. A. Martinez, J. Castillo, A. Ortiz-Karpf, L. Rendon, J. C. Mosquera, and V. Vega, “Deep Water Untested Oil-play in the Magdalena Fan, Caribbean Colombian Basin,” in Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, 2016. https://doi.org/10.1306/13531955M1083658

F. Qayyum, O. Catuneanu, and P. de Groot, “Historical developments in Wheeler diagrams and future directions,” Basin Research, vol. 27, no. 3, pp. 336–350, Jun. 2015. https://doi.org/10.1111/bre.12077.

J. Snedden and J. Sarg, “Seismic Stratigraphy - A Primer on Methodology,” in Search and Discovery Article #40270, 2008, p. 29. [Online]. Available: https://www.searchanddiscovery.com/pdfz/documents/2008/08004snedden/images/snedden. pdf.html

S. Bonvalot et al., “World Gravity Map,” Bureau Gravimetrique International (BGI), map, CGMW-BGICNES-IRD Ed., Paris. 2012.

J. . Mora et al., “Linking Late Cretaceous to Eocene Tectonostratigraphy of the San Jacinto Fold Belt of NW Colombia With Caribbean Plateau Collision and Flat Subduction,” Tectonics, 2017. https://doi.org/10.1002/2017TC004612

M. Ladd, J. W., M. Truchan, P. L. Talwani, P. Stoffa, T. Buhl, and et al., “Seismic reflection profiles across the southern margin of the Caribbean,” in The CaribbeanSouth America Plate Boundary and Regional Tectonics, and R. S. W. E. Bonini, R. B. Hargraves, Ed. Boulder: Geological Society of America Memoir 162, 1984, pp. 153–159. https://doi.org/10.1130/MEM162-p153.

P. Galindo, “Transtension and transpression in an oblique subduction setting: Evolution of the Bahia Basin, Colombian Caribbean margin,”. Earth Science and Engineering PhD theses. Imperial College London, 2016. https://doi.org/10.25560/31408.

R. Bernal-Olaya, J. Sanchez, P. Mann, and M. Murphy, “Along strike crustal thickness variations of the subducting Caribbean plate produces two distinctive styles of thrusting in the offshore South Caribbean deformed belt, Colombia,” in Petroleum Geology and Potential of the Colombian Caribbean Margin: AAPG Memoir 108, AAPG., C. Bartolini and P. Mann, Eds. AAPG, 2015, pp. 295–322. https://doi.org/10.1306/13531941M1083645

J. F. Flinch and V. Castillo, “Record and Constraints of the Eastward Advance of the Caribbean Plate in Northern South America,” in Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, 2015. https://doi.org/10.1306/13531930M1082957.

F. Métivier and Y. Gaudemer, “Mass transfer between eastern Tien Shan and adjacent basins (central Asia): constraints on regional tectonics and topography,” Geophysical Journal International, 1997. https://doi.org/10.1111/j.1365-246X.1997.tb04068.x

E. Christofferson, “Linear magnetic anomalies in the Colombia Basin, central Caribbean sea,” Bulletin of the Geological Society of America, 1973. https://doi.org/10.1130/00167606(1973)842.0.CO;2

K. H. James, “In situ origin of the Caribbean: Discussion of data,” Geological Society Special Publication, 2009. https://doi.org/10.1144/SP328.3.

M. Parra et al., “Orogenic wedge advance in the northern Andes: Evidence from the Oligocene-Miocene sedimentary record of the Medina Basin, Eastern Cordillera, Colombia,” Bulletin of the Geological Society of America, vol. 121, no. 5/6, pp. 780–800, 2009. https://doi.org/10.1130/B26257.1

S. León et al., “Transition From Collisional to Subduction-Related Regimes: An Example From Neogene Panama-Nazca-South America Interactions,” Tectonics, vol. 37, p. 21 p, 2018. https://doi.org/10.1002/2017TC004785

V. Caballero, M. Parra, A. Mora, C. Lopez, L. E. Rojas, and I. Quintero, “Factors controlling selective abandonment and reactivation in thick-skin orogens: A case study in the Magdalena Valley, Colombia,” Geological Society Special Publication, vol. 377, pp. 343–367, 2013. https://doi.org/10.1144/SP377.4.

A. Mora et al., “Tectonic History of the Andes and Sub-Andean Zones: Implications for the Development of the Amazon Drainage Basin,” in Amazonia: Landscape and Species Evolution, 1st ed., C. Hoorn and F. P. Wesseling, Eds. Oxford, UK: Wiley-Blackwell Publishing Ltd., 2011, pp. 38–60. https://doi.org/10.1002/9781444306408.ch4.

F. Laverde, “The Carribean Basin of Colombia, a Composite Cenozoic Accreationary Wedge with under-explored Hydrocarbon Potential,” in 7th Simposio Bolivariano - Exploracion Petrolera en las Cuencas Subandinas, Jan. 2000, vol. 93, pp. 153–159. https://doi.org/10.3997/2214-4609-pdb.118.027eng

B. U. Haq, J. Hardenbol, and P. R. Vail, “Chronology of fluctuating sea levels since the Triassic,” Science, 1987. https://doi.org/10.1126/science.235.4793.1156.

A. D. Miall, “Facies Analysis,” in Principles of Sedimentary Basin Analysis, Berlin, Heidelberg: SpringerVerlag, 2000. https://doi.org/10.1007/978-3-662-03999- 1_4

O. Catuneanu, Principles of Sequence Stratigraphy, First edit. Amsterdam, Boston, Heidelberg: Elsevier, 2006.

J. L. Pindell and S. F. Barrett, “Geological evolution of the Caribbean region; A plate-tectonic perspective,” in The Caribbean Region, G. Dengo and J. E. Case, Eds. Guatemala City, Guatemala: Geological Society of America, 1990, pp. 405–432. https://doi.org/10.1130/DNAG-GNA-H.405

L. Carvajal and P. Mann, “Western Caribbean intraplate deformation: Defining a continuous and active microplate boundary along the San Andres rift and Hess Escarpment fault zone, Colombian Caribbean Sea,” AAPG Bulletin, 2018. https://doi.org/10.1306/12081717221

P. Lonsdale, “Creation of the Cocos and Nazca plates by fission of the Farallon plate,” Tectonophysics, 2005. https://doi.org/10.1016/j.tecto.2005.05.011.

M. Tistl, K. P. Burgath, A. Höhndorf, H. Kreuzer, R. Muñoz, and R. Salinas, “Origin and emplacement of Tertiary ultramafic complexes in northwest Colombia: Evidence from geochemistry and KAr, SmNd and RbSr isotopes,” Earth and Planetary Science Letters, 1994. https://doi.org/10.1016/0012-821X(94)90241-0.

G. Hincapie et al., “Evaluación geológica y prospectividad de la Cuenca Cauca-Patía, Colombia, Ingeniería, Investigación y Desarrollo, 9(2): 37–42.2.009. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6096196

J. Ramón, G. Vidal, A. Rosero, P. Gómez, and H. Borja, “Revaluación del modelo geológico del Campo Tello (Valle Superior del Magdalena) y sus implicaciones en el programa de desarrollo,” Geología Colombiana, 26, 59-77. 2001. [Online]. Available: https://revistas.unal.edu.co/index.php/geocol/article/view/31559

D. Barrero, A. Pardo, A. C.A. Vargas, J.F. Martínez, Colombian Sedimentary Basins: Nomenclature, boundaries and Petroleum Geology, a New Proposal. ANH. Bogotá, 2007. [Online]. Available: https://www.anh.gov.co/Informacion-Geologica-y-Geofisica/Cuencas-sedimentarias/Documents/colombian_sedimentary_basins.pdf

M. I. Marín-Cerón, H. Leal-Mejía, M. Bernet, and J. Mesa-García, “Late Cenozoic to modern-day volcanism in the Northern Andes: A geochronological, petrographical, and geochemical review,” in Frontiers in Earth Sciences, 2019. https://doi.org/10.1007/978-3-319-76132-9_8

G. Siravo et al., “Slab flattening and the rise of the Eastern Cordillera, Colombia,” Earth and Planetary Science Letters, vol. 512, pp. 100–110, 2019. https://doi.org/10.1016/j.epsl.2019.02.002

S. a Schumm, “The disparity between present rates of denudation and orogeny,” USGS Professional Paper, 1963. https://doi.org/10.3133/pp454H.

S. Bonnet and A. Crave, “Landscape response to climate change: Insights from experimental modeling and implications for tectonic versus climatic uplift of topography,” Geology, 2003. https://doi.org/10.1130/0091-7613(2003)0312.0.CO;2

P. Zhang, P. Molnar, and W. R. Downs, “Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates,” Nature, 2001. https://doi.org/10.1038/35073504.

L. Struth, J. Babault, and A. Teixell, “Drainage reorganization during mountain building in the river system of the Eastern Cordillera of the Colombian Andes,” Geomorphology, vol. 250, pp. 370–383, Dec. 2015. https://doi.org/10.1016/j.geomorph.2015.09.012.

O. J. Pérez, M. A. Jaimes, and E. Garciacaro, “Microseismicity evidence for subduction of the Caribbean plate beneath the South American Plate in northwestern Venezuela,” Journal of Geophysical Research: Solid Earth, vol. 102, no. B8, pp. 17875–17881, Aug. 1997. https://doi.org/10.1029/96JB03174.

N. Montes, F. Velandia, J. Osorio, F. Audemard, and H. Diederix, “Interpretación morfotectónica de la falla Ibagué para su caracterización paleosismológica”. Boletín de Geología, 27(1), 95-114. 2.2005. [Online]. Available: https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/view/866 .

J. Acosta, L. Lonergan, and M. P. Coward, “Oblique transpression in the western thrust front of the Colombian Eastern Cordillera,” Journal of South American Earth Sciences, 2004. https://doi.org/10.1016/j. jsames.2004.06.002 .

H. Duque-Caro, “The choco block in the northwestern corner of South America: Structural, tectonostratigraphic, and paleogeographic implications,” Journal of South American Earth Sciences, 1990. https://doi.org/10.1016/0895-9811(90)90019-W

C. France-Lanord, L. Derry, and A. Michard, “Evolution of the Himalaya since Miocene time: Isotopic and sedimentological evidence from the Bengal Fan,” Geological Society Special Publication, 1993. https://doi.org/10.1144/GSL.SP.1993.074.01.40

S. C. Leslie and P. Mann, “Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea,” Earth and Planetary Science Letters, vol. 449, pp. 382–394, 2016. https://doi.org/10.1016/j. epsl.2016.05.040 .

F. Suter, “Tectono-sedimentary study of the Interanden north Cauca Valley Basin, central western Colombia”. Université de Genève. Thèse, 2008. http://doi.org/10.13097/archive-ouverte/unige:2281

J. Gómez, A. Ocampo, V. Vajda, and E. Al., “Pliocene impact crater discovered in Colombia: Geological, Geophysical and seismic evidences,” Lunar and Planetary Science, vol. XLVIII No. 1964, p. 2466).2.017.

A. Van Der Wiel, “Uplift and volcanism of the SE Colombian Andes in relation to Neogene sedimentation in the Upper Magdalena Valley, Doctoral thesis, Agricultural University of Wageningen, 198 p. Wageningen, The Netherlands. [Online]. Available: https://library.wur.nl/WebQuery/wurpubs/16199

I. Angel, O. Guzman, and J. Carcaillet, “Pleistocene Glaciations in the Northern Tropical Andes, South America (Venezuela, Colombia and Ecuador),” Cuadernos de Investigación Geográfica, 2017. https://doi.org/10.18172/cig.3202

K. F. Helmens, R. W. Barendregt, R. J. Enkin, J. Baker, and P. A. M. Andriessen, “Magnetic Polarity and Fission-Track Chronology of a Late Pliocene-Pleistocene Paleoclimatic Proxy Record in the Tropical Andes,” Quaternary Research, 1997. https://doi.org/10.1006/qres.1997.1886 .

P. R. Vail, F. Audemard, S. A. Bowman, P. N. Eisner, and C. Perez-Cruz, “The stratigraphic signatures of tectonics, eustasy and sedimentology—an overview”. In G. Einsele, W. Ricken, & A. Seilacher (Eds.), Cycles and events in stratigraphy (pp. 617–659). Berlin: Springer.

H. W. Posamentier and O. J. Martinsen, “The Character and Genesis of Submarine Mass-Transport Deposits: Insights from Outcrop and 3D Seismic Data,” in Mass-Transport Deposits in Deepwater Settings, First., Gary J. Nichols and Brian Ricketts, Ed. SEPM Special Publication 96, 2011, pp. 7–38. https://doi.org/10.2110/sepmsp.096.007

L. Moscardelli and L. Wood, “New classification system for mass transport complexes in offshore Trinidad,” Basin Research, vol. 20, pp. 73–98, 2008. https://doi.org/10.1111/j.1365-2117.2007.00340.x

R. Barrera, “Geología de las Planchas Planchas 16-17 Galerazamba y Barranquilla. Memoria explicativa.”Bogotá, Colombia. Ingeominas, p. 55 p, 2001.

G. A. Romero-Otero, R. M. Slatt, and C. Pirmez, “Evolution of the Magdalena Deepwater Fan in a Tectonically Active Setting, Offshore Colombia,” in Memoir 108: Petroleum Geology and Potential of the Colombian Caribbean Margin, C. Bartolini and P. Mann, Ed. AAPG, 2016, pp. 231–240. https://doi.org/10.1306/13531953M1083656

G. A. Romero, “Deepwater sedimentary processes in an active margin, Magdalena submarine fan, offshore Colombia,” Doctoral dissertation. Mewbourne College of Earth and Energy::ConocoPhillips School of Geology and Geophysics. The University of Oklahoma. Oklahoma, 2009. [Online]. Available: https://hdl.handle.net/11244/319039

M. I. Velez, J. I. Martínez, and F. Suter, “Late Holocene history of the floodplain lakes of the Cauca River, Colombia,” Journal of Paleolimnology, vol. 48, no. 4, p. 14, 2013. https://doi.org/10.1007/s10933-012-9663-9.

A. Cardona et al., “From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean-South America plate boundary,” Tectonophysics, 2012. https://doi.org/10.1016/j.tecto.2012.08.039

W. P. Chaisson and S. L. D’Hondt, “Neogene planktonic foraminifer biostratigraphy at Site 999, western Caribbean Sea,” in Proceedings of the Ocean Drilling Program: Scientific Results, 2000, p. 38. https://doi.org/10.2973/odp.proc.sr.165.010.2000

K. Kameo and T. J. Bralower, “Neogene calcareous nannofossil biostratigraphy of sites 998, 999, and 1000, Caribbean Sea,” in Proceedings of the Ocean Drilling Program: Scientific Results, Vol. 165., 2000, p. 15. https://doi.org/10.2973/odp.proc.sr.165.012.2000

A. M. Mantilla, “Crustal Structure of the Southwestern Colombian Caribbean,”, Ph.D. Thesis Insitut fur Geowissenschaften. Friedrich-SchillerUniversitãt Jena. Jena, Alemania, 121 pp. 2007. [Online]. Available:

https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00014613/Mantilla/Dissertation.pdf

P. Sternai, L. Caricchi, C. Pasquero, E. Garzanti, D. J. J. van Hinsbergen, and S. Castelltort, “Magmatic Forcing of Cenozoic Climate?,” Journal of Geophysical Research: Solid Earth, vol. 125, p. 22, 2020. https://doi.org/10.1029/2018JB016460

How to Cite
López- Ramos, E., Rincon Martinez, D., Moreno Gómez, N., & Gómez Gutierrez, P. D. (2021). Mass balance of Neogene sediments in the Colombia basin relationship with the evolution of the Magdalena and Cauca River basins. CT&F - Ciencia, Tecnología Y Futuro, 11(1), 65–95. https://doi.org/10.29047/01225383.297

Downloads

Download data is not yet available.
Published
2021-06-30
Section
Scientific and Technological Research Articles

Altmetric

Funding data

QR Code