El impacto de los combustibles mixtos que contienen aceite de pirólisis, diésel, n-butanol y 2-EHN en las emisiones y el rendimiento del motor diésel

Palabras clave: Combustibles alternativos, aceite de pirólisis, n-butanol, nitrato de 2-etilhexilo, motor diesel, emisiones

Resumen

Los impactos ambientales de los combustibles fósiles y su disponibilidad limitada aumentan la necesidad de investigar fuentes de energía alternativas. En esta investigación, se obtuvo aceite de pirólisis (PO) a partir de residuos de huesos de cereza ácida. El PO no puede utilizarse directamente como combustible en motores diésel debido a sus propiedades negativas, como baja densidad de energía, alta viscosidad, alto contenido de agua y bajo número de cetano. Por lo tanto, el PO se mezcló con diésel en varias proporciones de peso (wt%) utilizando n-butanol (NB) como co-solvente y nitrato de 2-etilhexilo (2-EHN) como mejorador del cetano. Los combustibles mezclados que contienen 40 wt% de diésel, es decir, D2 (Diésel 40% / PO 0% / NB 55% / 2-EHN 5%), D3 (Diésel 40% / PO 5% / NB 50% / 2-EHN 5%) y D4 (Diésel 40% / PO 15% / NB 40% / 2-EHN 5%) fueron identificados como las composiciones óptimas de mezcla con respecto a las características fisicoquímicas del combustible. Estos combustibles se probaron para el rendimiento del motor y las características de emisión a velocidades del motor de 1500, 1800, 2400, 3000 y 3600 rpm bajo carga completa del motor (10 Nm) en un motor diésel de un solo cilindro. Todos los datos (es decir, presión en el cilindro, par motor y cambios en el rendimiento, tasa de liberación de calor y características de emisión) se registraron utilizando un sistema de adquisición de datos Kistler KiBox. Las pruebas del motor mostraron una disminución en las emisiones de NOx, HC y hollín cuando se compararon los combustibles mezclados (D2, D3 y D4) con D1 (Diésel 100% / PO 0% / NB 0% / 2-EHN 0%). Las menores emisiones de NOx en los combustibles mezclados se explican por el contenido de agua del PO. El agua aumenta la capacidad calorífica específica de la mezcla de aire-combustible mientras reduce la temperatura interna del cilindro. Además, el alto calor de evaporación del n-butanol puede contribuir a una reducción en las emisiones de NOx. Además, la disminución de las emisiones de HC puede ser causada por el aumento en la proporción de oxígeno de los combustibles mezclados, mientras que la disminución de las emisiones de hollín puede deberse a la baja proporción C/H y al alto contenido de oxígeno de los combustibles mezclados. En conclusión, las mezclas de PO, diésel, n-butanol y 2-EHN pueden ser utilizadas como biocombustibles en aplicaciones de motores diésel.

Biografía del autor/a

İbrahim Mutlu, Department of Automotive Engineering, Afyon Kocatepe University, Afyonkarahisar, Türkiye

Turkiye

Referencias bibliográficas

Alcala, A., & Bridgwater, A. V. (2013). Upgrading fast pyrolysis liquids: Blends of biodiesel and pyrolysis oil. Fuel, 109, 417–426. https://doi.org/10.1016/j.fuel.2013.02.058

Barth, T., & Kleinert, M. (2008). Motor fuels from biomass pyrolysis. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 31(5),773-781. https://doi.org/https://doi.org/10.1002/ceat.200800122

Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical engineering journal, 91(2-3), 87-102. https://doi.org/10.1016/S1385-8947(02)00142-0.

Bridgwater, A. (2013). Fast pyrolysis of biomass for the production of liquids. In Biomass combustion science, technology and engineering (pp. 130-171). Woodhead Publishing. https://doi.org/10.1533/9780857097439.2.130

Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic geochemistry, 30(12), 1479-1493. https://doi.org/10.1016/S0146-6380(99)00120-5

Bridgwater, A. V. (2012). Upgrading biomass fast pyrolysis liquids. Environmental Progress & Sustainable Energy, 31(2), 261-268. https://doi.org/https://doi.org/10.1002/ep.11635

Chiaramonti, D., Bonini, M., Fratini, E., Tondi, G., Gartner, K., Bridgwater, A. V., ... & Baglioni, P. (2003). Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines—Part 1: emulsion production. Biomass and bioenergy, 25(1), 85-99. https://doi.org/10.1016/S0961-9534(02)00183-6

Chong, K. J., & Bridgwater, A. V. (2017). Fast pyrolysis oil fuel blend for marine vessels. Environmental Progress & Sustainable Energy, 36(3), 677-684. https://doi.org/https://doi.org/10.1002/ep.12402.

De Caro, P. S., Mouloungui, Z., Vaitilingom, G., & Berge, J. C. (2001). Interest of combining an additive with diesel–ethanol blends for use in diesel engines. Fuel, 80(4), 565-574. https://doi.org/10.1016/S0016-2361(00)00117-4

Doğan, O., Çelik, M. B., & Özdalyan, B. (2012). The effect of tire derived fuel/diesel fuel blends utilization on diesel engine performance and emissions. Fuel, 95, 340-346. https://doi.org/https://doi.org/10.1016/j.fuel.2011.12.033

Emiroğlu, A. O., Keskin, A., & Şen, M. (2018). Experimental investigation of the effects of turkey rendering fat biodiesel on combustion, performance and exhaust emissions of a diesel engine. Fuel, 216, 266-273. https://doi.org/10.1016/j.fuel.2017.12.026

Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81, 1378-1392. https://doi.org/10.1016/j.rser.2017.05.178.

Han, J., & Somers, L. M. T. (2021). Comparative investigation of ignition behavior of butanol isomers using constant volume combustion chamber under diesel-engine like conditions. Fuel, 304, 121347. https://doi.org/10.1016/j.fuel.2021.121347

Han, J., Somers, L. M. T., & van de Beld, B. (2023). Combustion and emission characteristics of hydrotreated pyrolysis oil on a heavy-duty engine. Fuel, 351, 128888. https://doi.org/10.1016/j.fuel.2023.128888

Han, J., Wang, Y., Somers, L. M. T., & van de Beld, B. (2022). Ignition and combustion characteristics of hydrotreated pyrolysis oil in a combustion research unit. Fuel, 316, 123419. https://doi.org/10.1016/j.fuel.2022.123419

Hellier, P., Ladommatos, N., & Yusaf, T. (2015). The influence of straight vegetable oil fatty acid composition on compression ignition combustion and emissions. Fuel, 143, 131-143. http://doi.org/10.1016/j.fuel.2014.11.021.

Himmel, M. E., Ding, S. Y., Johnson, D. K., Adney, W. S., Nimlos, M. R., Brady, J. W., & Foust, T. D. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. science, 315(5813), 804-807.https://doi.org/10.1126/science.1137016.

Honnery, D., Ghojel, J., & Stamatov, V. (2008). Performance of a DI diesel engine fuelled by blends of diesel and kiln-produced pyroligneous tar. Biomass and Bioenergy, 32(4), 358-365. https://doi.org/10.1016/j.biombioe.2007.10.004

Hossain, A. K., Serrano, C., Brammer, J. B., Omran, A., Ahmed, F., Smith, D. I., & Davies, P. A. (2016). Combustion of fuel blends containing digestate pyrolysis oil in a multi-cylinder compression ignition engine. Fuel, 171, 18-28. https://doi.org/10.1016/j.fuel.2015.12.012

Huang, Y., Han, X., Shang, S., & Wang, L. (2012). Performance and emissions of a direct-injection diesel engine operating on emulsions of corn stalk bio-oil in diesel. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226(8), 1119-1129. https://doi.org/10.1177/0954407012438295

Ikura, M., Stanciulescu, M., & Hogan, E. (2003). Emulsification of pyrolysis derived bio-oil in diesel fuel. Biomass and bioenergy, 24(3), 221-232. https://doi.org/https://doi.org/10.1016/S0961-9534(02)00131-9

Jaafar, M. N. M., & Safiullah, S. (2018). Combustion characteristics of rice bran oil biodiesel in an oil burner. Jurnal Teknologi, 80(3). https://doi.org/10.11113/jt.v80.11612

Jiang, X., & Ellis, N. (2010). Upgrading bio-oil through emulsification with biodiesel: mixture production. Energy & Fuels, 24(2), 1358-1364. https://doi.org/10.1021/ef9010669

Kaewbuddee, C., Wathakit, K., & Srisertpol, J. (2018, April). The effect of n-butanol to waste plastic oil fuel blends utilization on engine emissions of a single cylinder diesel engine. In 2018 IEEE International Conference on Applied System Invention (ICASI) (pp. 1224-1227). IEEE. https://doi.org/10.1109/ICASI.2018.8394510

Karagöz, M. (2020). Investigation of performance and emission characteristics of an CI engine fuelled with diesel–waste tire oil–butanol blends. Fuel, 282, 118872. https://doi.org/10.1016/j.fuel.2020.118872

Keskin, A. (2017). Experimental investigation of the effect of cottonseed oil biodiesel eurodiesel mixtures on combustion, performance and emissions at full load. Afyon Kocatepe University Journal of Science and Engineering, 17, 797-809. https://doi.org/10.5578/fmbd.57621

Kim, T. Y., & Lee, S. H. (2015). Combustion and emission characteristics of wood pyrolysis oil-butanol blended fuels in a DI diesel engine. International Journal of Automotive Technology, 16, 903-912. https://doi.org/10.1007/s12239-015-0092-4

Kim, T. Y., Lee, S., & Kang, K. (2015). Performance and emission characteristics of a high-compression-ratio diesel engine fueled with wood pyrolysis oil-butanol blended fuels. Energy, 93, 2241-2250. https://doi.org/10.1016/j.energy.2015.10.119

Lapuerta, M., Rodríguez-Fernández, J., & De Mora, E. F. (2009). Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy, 37(11), 4337-4344. https://doi.org/10.1016/j.enpol.2009.05.049.

Lee, S., Kim, T. Y., & Kang, K. Y. (2015). A feasibility study of using pyrolysis oil/butanol blended fuel in a DI diesel engine (No. 2015-24-2437). SAE Technical Paper. https://doi.org/10.4271/2015-24-2437

Lee, S., Choi, Y., & Kang, K. (2019). Application of blended fuel containing coffee ground pyrolysis oil in a diesel generator. Fuel, 256, 115998. https://doi.org/10.1016/j.fuel.2019.115998

Lee, S., Kim, T., & Kang, K. (2014). Performance and emission characteristics of a diesel engine operated with wood pyrolysis oil. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228(2), 180-189. https://doi.org/10.1177/0954407013502951

Lee, S., & Kim, T. Y. (2015). Feasibility study of using wood pyrolysis oil–ethanol blended fuel with diesel pilot injection in a diesel engine. Fuel, 162, 65-73. https://doi.org/10.1016/j.fuel.2015.08.049

Lee, S., Woo, S. H., Kim, Y., Choi, Y., & Kang, K. (2020). Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel. Energy, 206, 118201. https://doi.org/10.1016/j.energy.2020.118201

Lin, B. J., Chen, W. H., Budzianowski, W. M., Hsieh, C. T., & Lin, P. H. (2016). Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers. Applied energy, 178, 746-757. https://doi.org/10.1016/j.apenergy.2016.06.104

Lu, Q., Zhang, Z. B., Liao, H. T., Yang, X. C., & Dong, C. Q. (2012). Lubrication properties of bio-oil and its emulsions with diesel oil. Energies, 5(3), 741-751. https://doi.org/10.3390/en5030741

Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource technology, 70(1), 1-15. https://doi.org/10.1016/S0960-8524(99)00025-5

Martínez, J. D., Ramos, Á., Armas, O., Murillo, R., & García, T. (2014). Potential for using a tire pyrolysis liquid-diesel fuel blend in a light duty engine under transient operation. Applied Energy, 130, 437-446. https://doi.org/10.1016/j.apenergy.2014.05.056

Murugan, S., Ramaswamy, M. C., & Nagarajan, G. (2009). Assessment of pyrolysis oil as an energy source for diesel engines. Fuel processing technology, 90(1), 67-74. https://doi.org/10.1016/j.fuproc.2008.07.017

Garzón, N. A. N., Oliveira, A. A., & Bazzo, E. (2019). An ignition delay correlation for compression ignition engines fueled with straight soybean oil and diesel oil blends. Fuel, 257, 116050. https://doi.org/10.1016/j.fuel.2019.116050.

Prakash, R., Singh, R. K., & Murugan, S. (2013). Use of biodiesel and bio-oil emulsions as an alternative fuel for direct injection diesel engine. Waste and Biomass Valorization, 4, 475-484. https://doi.org/10.1007/s12649-012-9182-y

Prasad, K. M., & Murugavelh, S. (2020). Experimental investigation and kinetics of tomato peel pyrolysis: Performance, combustion and emission characteristics of bio-oil blends in diesel engine. Journal of Cleaner Production, 254, 120115. https://doi.org/10.1016/j.jclepro.2020.120115

Reverchon, E. (1997). Supercritical fluid extraction and fractionation of essential oils and related products. The Journal of Supercritical Fluids, 10(1), 1-37. https://doi.org/10.1016/S0896-8446(97)00014-4

Sakthivel, R., Ramesh, K., Marshal, S. J. J., & Sadasivuni, K. K. (2019). Prediction of performance and emission characteristics of diesel engine fuelled with waste biomass pyrolysis oil using response surface methodology. Renewable energy, 136, 91-103. https://doi.org/10.1016/j.renene.2018.12.109.

Swarna, S., Swamy, M. T., Divakara, T. R., Krishnamurthy, K. N., & Shashidhar, S. (2022). Experimental assessment of ternary fuel blends of diesel, hybrid biodiesel and alcohol in naturally aspirated CI engine. International Journal of Environmental Science and Technology, 19(9), 8523-8554. https://doi.org/10.1007/s13762-021-03586-7

Volli, V., Singh, R. K., & Murugan, S. (2014). The use of mustard cake pyrolytic oil blends as fuel in a diesel engine. Waste and Biomass Valorization, 5, 661-668. https://doi.org/10.1007/s12649-013-9270-7

Yalçın, A. H., & Mutlu, İ. (2022). Atık Vişne Çekirdeği Pirolitik Yağın Dizel Motorlarda Alternatif Yakıt Olarak Kullanılabilirliği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22(4), 963-971. https://doi.org/10.35414/akufemubid.1077035

Yao, M., Wang, H., Zheng, Z., & Yue, Y. (2010). Experimental study of n-butanol additive and multi-injection on HD diesel engine performance and emissions. Fuel, 89(9), 2191-2201. https://doi.org/10.1016/j.fuel.2010.04.008

Zhang, Q., Chang, J., Wang, T., & Xu, Y. (2007). Review of biomass pyrolysis oil properties and upgrading research. Energy conversion and management, 48(1), 87-92. https://doi.org/10.1016/j.enconman.2006.05.010

Cómo citar
Yalçın, A. H., Mutlu, İbrahim, Şimşir, E., Akbulut, F., Emiroğlu , A. O., Şen, M., & Keskin, A. (2024). El impacto de los combustibles mixtos que contienen aceite de pirólisis, diésel, n-butanol y 2-EHN en las emisiones y el rendimiento del motor diésel. CT&F - Ciencia, Tecnología Y Futuro, 14(2), 59–66. https://doi.org/10.29047/01225383.749

Descargas

Los datos de descargas todavía no están disponibles.
Publicado
2024-12-30
Sección
Artículos de investigación científica y tecnológica

Métricas

QR Code
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Algunos artículos similares: