Possibilities of corrosion assessment of metals in biodiesel using EIS

  • Jorge A. Calder Universidad de Antioquia.
  • Libia M. Baena Universidad de Antioquia.
  • Julian Lenis Universidad de Antioquia.
Keywords: Biodiesel, Corrosion, Electrochemical Impedance Spectroscopy


Biodiesel is an alternative fuel obtained from renewable sources. However, during the biodiesel auto-oxidation, reactive compounds could be formed. Those compounds increase the biodiesel corrosivity and the degradation of the fuel. This work presents a study of the corrosion of metals commonly used in auto-parts exposed to biodiesel and biodiesel-fatty acids blends. Electrochemical Impedance Spectroscopy (EIS) measurements were performed during the exposition time in order to determine the susceptibility of the metals to corrosion. The polarization resistance (Rp) values at the initial exposition times were of  the order of 1x109 ohm.cm2, and the associated capacitances were of the order of 10-11 F.cm-2 for all metals. The Nyquist impedance diagrams of copper and carbon steel -immersed in biodiesel-fatty acid blends after the second day of immersion- showed at least 2 capacitive loops. Although the capacitance values of lowest frequency loop are still too small (10-9 F.cm-2) to be associated with a metal double layer capacitance, the values of these capacitances increased with the increment of the exposition time. It is pos-sible that for longer times of exposition, the electrochemical parameter related with the lowest capacitive loop of the impedance can be associated to the metal corrosion phenomena.


Aquino, I. P., Hernández, R. P. B., Chicoma, D. L., Pinto, H. P. F. & Aoki, I. V. (2012). Influence of light, temperature and metallic ions on biodiesel degradation and corrosiveness to copper and brass. Fuel, 102: 795-807.

Baena, L. M., Gómez, M. & Calderón, J. A. (2012). Aggressiveness of a 20% bioethanol-80% gasoline mixture on autoparts: I behavior of metallic materials and evaluation of their electrochemical properties. Fuel, 95: 320-328.

Brossia, C., Gileadi, E. & Kelly, R. (1995). The electrochemistry of iron in methanolic solutions and its relation to corrosion. Corros. Sci., 37(9), 1455-1471.

De Souza, J. P., Mattos, O. R., Sathler, L. & Takenouti, H. (1987). Impedance measurements of corroding mild steel in an automotive fuel ethanol with and without inhibitor in a two and three electrode cell. Corros. Sci., 27(12), 1351-1364.

Díaz-Ballote, L., López-Sansores, J., Maldonado-López, L. & Garfias-Mesias, L. J. (2009). Corrosion behavior of aluminum exposed to a biodiesel. Electrochem. Commun., 11(1), 41-44.

Fazal, M. A., Haseeb, A. S. M. A. & Masjuki H. H. (2010). Comparative corrosive characteristics of petroleum diesel and palm biodiesel for automotive materials. Fuel Process. Technol., 91(10), 1308-1315.

Fazal, M. A., Haseeb, A. S. M. A. & Masjuki H. H. (2013). Corrosion mechanism of copper in palm biodiesel. Corros. Sci., 67: 50-59.

Gui, F. & Sridhar, N. (2010). Conducting electrochemical measurements in fuel-grade ethanol using microelectrodes. Corrosion, 66(4), 045005-1_045005-8.

Gui, F., Sridhar, N. & Beavers, J. (2010). Localized corrosion of carbon steel and its implications on the mechanism and inhibition of stress corrosion cracking in fuel-grade ethanol. Corrosion, 66(12), 125001-1_125001-12.

Haseeb, A. S. M. A., Masjuki, H. H., Ann, L. J. & Fazal, M. A. (2010). Corrosion characteristics of copper and leaded bronze in palm biodiesel. Fuel Process. Technol., 91(3), 329-334.

Jafari, H., Idris, M., Ourdjini, A., Rahimi, H. & Ghobadian, B. (2011). EIS study of corrosion behavior of metallic materials in ethanol blended gasoline containing water as a contaminant. Fuel, 90(3), 1181-1187.

Kamiński, J. & Kurzydłowski, K. J. (2008). Use of impedance spectroscopy to testing corrosion resistance of carbon steel and stainless steel in water-biodiesel configuration. Corros. Meas. (JCM), 6: B35-B39.

Kaul, S., Saxena, R. C., Kumar, A., Negi, M. S., Bhatnagar, A. K., Goyal, H. B. & Gupta, A. K. (2007). Corrosion behavior of biodiesel from seed oils of Indian origin on diesel engine parts. Fuel Process. Technol., 88(3), 303-307.

Lou, X., Yang, D. & Singha, P. M. (2010). Film breakdown and anodic dissolution during stress corrosion cracking of carbon steel in bioethanol. J. Electrochem. Soc., 157(2), C86-C94.

Niczke, L., Czechowski, F. & Gawel, I. (2007). Oxidized rapeseed oil methyl ester as a bitumen flux: Structural changes in the ester during catalytic oxidation. Prog. Org. Coat., 59(4), 304-311.

Sarin, A., Arora, R., Singh, N. P., Sharma, M. & Malhotra, R. (2009). Influence of metal contaminants on oxidation stability of Jatropha biodiesel. Energy, 34(9), 1271-1275.

Sridhar, N., Price, K., Buckingham, J. & Dante, J. (2006). Stress corrosion cracking of carbon steel in ethanol. Corrosion, 62(8), 687-702.

Wang, W., Jenkins, P. E. & Ren, Z. J. (2012). Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture. Corros. Sci., 57: 215-219.
How to Cite
Calder, J. A., Baena, L. M., & Lenis, J. (2014). Possibilities of corrosion assessment of metals in biodiesel using EIS. CT&F - Ciencia, Tecnología Y Futuro, 5(4), 85-96. https://doi.org/10.29047/01225383.43


Download data is not yet available.
Scientific and Technological Research Articles

More on this topic