Detachment levels of Colombian caribbean mud volcanoes

Keywords: Mud volcanoes, Geochemistry, Northern Colombia, petroleum systems

Abstract

Regional analysis of mud volcanoes demonstrates the regional extension of these processes in Northern Colombia. Mud volcanoes are active systems that manifest the characteristics of the underlying sedimentary sequences on the surface, as well as the presence of hydrocarbons. These may which provide information about the oil systems and the characterization of new migration paths. New data acquired during field geology studies, along with the evaluation of acquired aerial images by dron, allowed to observe variations in terms of morphology and neotectonic process, being distinctive between mud volcanoes formed in different structural domains. Mud volcanoes formed in areas of basement without thrust faults (back stop zone) are usually circular, connected to the basement by regional faults. Other mud volcanoes formed in older and younger deformed belts tend to present ellipsoidal shapes, with drainages patterns that suggest local stress fields associated with regional strike slip movements of major faults. The analysis of U/Pb ages in detrital zircons extracted from mud volcanoes and outcropping sedimentary sequences in the Colombian Caribbean, together with the analysis of foraminiferal and palynomorph faunas, suggest different levels of detachment. Clay mineralogy and geochemistry indicate that mud volcanoes formed in the back stop and the Northern part of the San Jacinto deformed belt have sludge material originated in sedimentary sequences with contributions from continental basement rocks, while the mud volcanoes located in the central and Southern parts of the studied area tend to show sediments provided from deepest stratigraphic levels, derived from less evolved magmatic sources (dioritic basements). Gas and water analysis obtained from studied mud volcanoes suggest that the old deformed belt, Paleocene accretionary wedge and back stop areas, have evidences of thermogenic oil systems, while in the domain of the younger deformed belt the tendency is to indicate evidences of microbial process.

References

Aguilera, R., Cediel, F., Ojeda, G. Y., & Colmenares, F. (2011). Geology and hydrocarbon potential Sinú and San Jacinto basins. Petroleum geology of Colombia, 12. http://www.scielo.org.co/pdf/boge/v44n1/2145-8553-boge-44-01-15.pdf

Agustawijaya, D. S., Karyadi, K., Krisnayanti, B. D., & Sutanto, S. (2017). Rare earth element contents of the Lusi mud: An attempt to identify the environmental origin of the hot mudflow in East Java–Indonesia. Open Geosciences, 9(1), 689-706. https://doi.org/10.1515/geo-2017-0052.

Albertz, M., Beaumont, C., & Ings, S. J. (2010). Geodynamic modeling of sedimentation-induced overpressure, gravitational spreading, and deformation of passive margin mobile shale basins. https://doi.org/10.1306/l3231307M933417.

Amajor, L. C. (1987). Major and trace element geochemistry of Albian and Turonian shales from the Southern Benue trough, Nigeria. Journal of African Earth Sciences (1983), 6(5), 633-641. https://doi.org/10.1016/0899-5362(87)90002-9.

ANH (2005). Sinu – San Jacinto Basin. Bogotá DC: Agencia nacional de Hidrocarburos. https://www.anh.gov.co/documents/4205/Sin%C3%BA_San_Jacinto_PDF.pdf

ANH, C. S. B. (2007). Nomenclature, boundaries and petroleum geology, a New Proposal. Bogotá DC: Agencia Nacional de Hidrocarburos. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=72947.

Aristizábal, C., Ferrari, A., & Silva, C. (2009). Control neotectónico del diapirismo de lodo en la región de Cartagena, Colombia. Ingeniería Investigación y Desarrollo: I2+ D, 8(1), 42-50. https://dialnet.unirioja.es/descarga/articulo/6096122.pdf

Baloglanov, E. E., & Mamedova, A. N. (2018). INTENSITY OF MUD VOLCANIC ACTIVITY–A HARBINGER OF EARTHQUAKE. Theoretical & Applied Science, (7), 148-153. https://doi.org/10.15863/tas.2018.07.63.23.

Barrera, R. (2001). Geología de las Planchas 16-17 (Galerazamba y Barranquilla). Ingeominas. Memoria Explicativa, 3-54. http://recordcenter.sgc.gov.co/B4/13010010002331/documento/pdf/0101023311101000.pdf.

BARRERA, O. (2003). Geología de la plancha 43 San Antero-San Bernardo del Viento. Ingeominas. Memoria Explicativa. https://recordcenter.sgc.gov.co/B4/13010010002491/documento/pdf/0101024911101000.pdf.

Triana, Y. D. B. (2018). Sedimentary megasequences of Colombian basin, offshore Colombia (Doctoral dissertation, The University of Arizona). https://repository.arizona.edu/handle/10150/631927.

Bayona, G., Cardona, A., Jaramillo, C., Mora, A., Montes, C., Valencia, V., ... & Ibañez-Mejia, M. (2012). Early Paleogene magmatism in the northern Andes: Insights on the effects of Oceanic Plateau–continent convergence. Earth and Planetary Science Letters, 331, 97-111. https://doi.org/10.1016/j.epsl.2012.03.015.

Bernal-Olaya, R., Mann, P., & Vargas, C. A. (2015). Earthquake, tomographic, seismic reflection, and gravity evidence for a shallowly dipping subduction zone beneath the Caribbean Margin of Northwestern Colombia. https://doi.org/10.1306/13531939m1083642.

Bonini, M., Rudolph, M. L., & Manga, M. (2016). Long-and short-term triggering and modulation of mud volcano eruptions by earthquakes. Tectonophysics, 672, 190-211. https://doi.org/10.1016/j.tecto.2016.01.037.

Bown, P. R., & Young, J. R. (1998). Calcareous nannofossil biostratigraphy. British Micropaleontology Society Series, Chapman & Hall, London, 16-28. https://doi.org/10.1007/978-94-011-4902-0_2

Breen, N. A. (1989). Structural effect of Magdalena fan deposition on the northern Colombia convergent margin. Geology, 17(1), 34-37. https://doi.org/10.1130/0091-7613(1989)017<0034:SEOMFD>2.3.CO;2.

Briceño, L. A., & Vernette, G. (1992). Manifestaciones del diapirismo arcilloso en el margen colombiano del Caribe. Earth Sciences Research Journal, (1), 21-30. https://www.academia.edu/3171088/Manifestaciones_del_diapirismo_arcilloso_en_el_margen_colombiano_del_Caribe.

Bürgl, H. (1960). Geología de la Península de la Guajira. Boletín Geológico, 6(1-3), 129–168. https://doi.org/10.32685/0120-1425/bolgeol6.1-3.1958.314.

Cadena, A. F., Romero, G., & Slatt, R. (2015). Application of stratigraphic grade concepts to understand basin-fill processes and deposits in an active margin setting, magdalena submarine fan and associated fold-and-thrust belts, Offshore Colombia. Petroleum Geology and Potential of the Colombian Caribbean Margin. 108, 323-344. https://doi.org/10.1306/13531942M1083646.

Camerlenghi, A., Cita, M. B., Vedova, B. D., Fusi, N., Mirabile, L., & Pellis, G. (1995). Geophysical evidence of mud diapirism on the Mediterranean Ridge accretionary complex. Marine Geophysical Researches, 17, 115-141.https://doi.org/10.1007/BF01203423.

Cardona, A., Valencia, V., Bayona, G., Jaramillo, C., Ojeda, G., & Ruiz, J. (2009). U/Pb LA-MC-ICP-MS Zircon Geochronology and Geochemistry from a Postcollisional Biotite Granite of the Baja Guajira Basin, Colombia: Implications for Late Cretaceous and Neogene Caribbean–South American Tectonics. The Journal of Geology, 117(6), 685-692. https://doi.org/10.1086/605776.

Cardona, A., Valencia, V., Bustamante, C., García-Casco, A., Ojeda, G., Ruiz, J., ... & Weber, M. (2010). Tectonomagmatic setting and provenance of the Santa Marta Schists, northern Colombia: Insights on the growth and approach of Cretaceous Caribbean oceanic terranes to the South American continent. Journal of South American Earth Sciences, 29(4), 784-804. https://doi.org/10.1016/j.jsames.2009.08.012.

Cardona, A., Valencia, V. A., Bayona, G., Duque, J., Ducea, M., Gehrels, G., ... & Ruiz, J. (2011). Early‐subduction‐related orogeny in the northern Andes: Turonian to Eocene magmatic and provenance record in the Santa Marta Massif and Rancheria Basin, northern Colombia. Terra Nova, 23(1), 26-34. https://doi.org/10.1111/j.1365-3121.2010.00979.x.

Cardona, A., Valencia, V., Weber, M., Duque, J., Montes, C., Ojeda, G., ... & Villagomez, D. (2011). Transient Cenozoic tectonic stages in the southern margin of the Caribbean plate: U-Th/He thermochronological constraints from Eocene plutonic rocks in the Santa Marta massif and Serranía de Jarara, northern Colombia. Geologica Acta, 445-469. https://doi.org/10.1344/105.000001739.

Cardona, A., Montes, C., Ayala, C., Bustamante, C., Hoyos, N., Montenegro, O., ... & Zapata, S. (2012). From arc-continent collision to continuous convergence, clues from Paleogene conglomerates along the southern Caribbean–South America plate boundary. Tectonophysics, 580, 58-87. https://doi.org/10.1016/j.tecto.2012.08.039.

Cardona, A. (2014) Basement geochronology from offshore and onshore Guajira basins: R-11 and R12 blocks. (Documento interno). Instituto Colombiano del Petróleo. Bucaramanga, Colombia.

Carvajal, J. H., & Mendivelso, D. (2017). Volcanismo de lodo del Caribe central colombiano. Servicio Geológico Colombiano. Colección Publicaciones Especiales SGC. https://doi.org/10.32685/9789585978201.

Cediel, F., Shaw, R. P., & Cceres, C. (2003). Tectonic assembly of the northern Andean block AAPG, The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics, (79), 815–848. https://doi.org/10.1306/M79877C37

Ceramicola, S., Praeg, D., Cova, A., Loher, M., Bohrmann, G., & Mascle, J. (2020). Mud volcanoes and seafloor fluid seepage on the Calabrian accretionary prism (Ionian Sea). In Memorie Descrittive Carta Geologica d'Italia (Vol. 150, pp. 77-83). ISPRA, Servizio Geologico d'Italia. https://hal.science/hal-03551598/document.

Ceron-Abril, J. F. (2008). Crustal structure of the Colombian Caribbean Basin and margins (Doctoral dissertation, University of South Carolina). https://www.proquest.com/openview/46eb3647887ab614994c0f91a80465b1/1?pq-origsite=gscholar&cbl=18750.

Chamot-Rooke, N., Rabaute, A., & Kreemer, C. (2005). Western Mediterranean Ridge mud belt correlates with active shear strain at the prism-backstop geological contact. Geology, 33(11), 861-864. https://doi.org/10.1130/G21469.1.

Chang, Z., Vervoort, J. D., McClelland, W. C., & Knaack, C. (2006). U‐Pb dating of zircon by LA‐ICP‐MS. Geochemistry, Geophysics, Geosystems, 7(5). https://doi.org/10.1029/2005GC001100

Chen, B., Liu, G., Wu, D., & Sun, R. (2016). Comparative study on geochemical characterization of the Carboniferousaluminous argillites from the Huainan Coal Basin, China. Turkish Journal of Earth Sciences, 25(3), 274-287. https://doi.org/10.3906/yer-1508-9.

Clauer, N., & Chaudhuri, S. (2012). Clays in crustal environments: isotope dating and tracing. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-79085-0.

Clavijo, J., & Barrera, R. (2002) ‘Geología de las Planchas 44 Sincelejo y 53 Sahagun’, Ingeominas. Memoria Explicativa https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=14403

Correa, I., Ríos, A., González, D., Toro, M., Ojeda, G., & Restrepo, I. (2007). Erosión litoral entre Arboletes y Punta San Bernardo, costa caribe colombiana. Boletín de Geología, 29(2), 115-129. https://www.redalyc.org/pdf/3496/349632018012.pdf.

Corredor, F., Shaw, J., & Villamil, T. (2003, September). Complex imbricate systems in the southern Caribbean Basin, offshore northern Colombia: Advanced structural and stratigraphic analysis, and implications for regional oil exploration. In 8th Simposio Bolivariano-Exploracion Petrolera en las Cuencas Subandinas (pp. cp-33). EAGE Publications BV. https://doi.org/10.3997/2214-4609-pdb.33.paper5.

Deville, E., Battani, A., Griboulard, R., Guerlais, S., Herbin, J. P., Houzay, J. P., ... & Prinzhofer, A. (2003). The origin and processes of mud volcanism: new insights from Trinidad. Geological Society, London, Special Publications, 216(1), 475-490. https://doi.org/10.1144/GSL.SP.2003.216.01.31.

Deville, E., Guerlais, S. H., Callec, Y., Griboulard, R., Huyghe, P., Lallemant, S., ... & Collaboration of the Caramba Working Group. (2006). Liquefied vs stratified sediment mobilization processes: insight from the South of the Barbados accretionary prism. Tectonophysics, 428(1-4), 33-47. https://doi.org/10.1016/j.tecto.2006.08.011.

Dill, H. G., Ufer, K., Bornemann, A., Techmer, A., & Buzatu, A. (2019). From the strand plain to the reef: A sedimentological–geomorphological study of a Holocene coast affected by mud diapirism (Archipélago Rosario-Barú, Colombia). Marine Geology, 415, 105953. https://doi.org/10.1016/j.margeo.2019.05.012.

DILL, H. G.; KAUFHOLD, S. The Totumo mud volcano and its near-shore marine sedimentological setting (North Colombia)—From sedimentary volcanism to epithermal mineralization. Sedimentary Geology, 2018, vol. 366, p. 14-31. https://doi.org/10.1016/j.sedgeo.2018.01.007.

Domínguez, J. G., Gómez, J. C., Ricaurte, C., Mayo, G., Orejarena, J., Díaz, J. M., & Andrade, C. A. (2010). Cobertura de los fondos y paisajes bentónicos asociados a formaciones diapíricas en los Bancos de Salmedina, Plataforma Continental del Caribe Colombiano. Boletín de Investigaciones Marinas y Costeras, 39(1), 117–135. https://doi.org/10.25268/bimc.invemar.2010.39.1.145.

Duque-Caro, H. (1979). Major Structural Elements and Evolution of Northwestern Colombia: Small Basin Margins. Geological and geophysical investigations of continental margins: American Association of Petroleum Geologists Memoir 29. https://www.scienceopen.com/document?vid=d9ce57fb-a2e0-45f8-834e-70a4194de21f.

El-Wekeil, S. S., & Abou El-Anwar, E. A. (2013). Petrology, geochemistry and sedimentation history of Lower Carboniferous shales in Gebel Abu Durba, southwestern Sinai, Egypt. Journal of Applied Sciences Research, 9(8), 4781-4798. https://www.semanticscholar.org/paper/Petrology%2C-geochemistry-and-sedimentation-history-EL-Wekeil-El-Anwar/60fc11530756dd10921877f4d6378498a62b3fe6

Fesharaki, O., GARCÍA-ROMERO, E., CUEVAS-GONZÁLEZ, J., & LÓPEZ-MARTÍNEZ, N. (2007). Clay mineral genesis and chemical evolution in the Miocene sediments of Somosaguas, Madrid Basin, Spain. Clay minerals, 42(2), 187-201.https://doi.org/10.1180/claymin.2007.042.2.05.

Flinch, J.F. (2003) ‘Structural evolution of the Sinu-lower Magdalena area (northern Colombia)’, in C. Bartolini, R. T. Buffler, and J. Blickwede (ed.) The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics: AAPG Memoir 79. AAPG, pp. 776–796. https://doi.org/10.1306/M79877C35

Flinch, J. F., & Castillo, V. (2015). Record and constraints of the eastward advance of the Caribbean plate in northern South America. Petroleum Geology and Potential of the Colombian Caribbean Margin. Memoir 108. https://doi.org/10.1306/13531930m1082957.

Fulignati, P. (2020). Clay minerals in hydrothermal systems. Minerals, 10(10), 919, 17.

https://doi.org/10.3390/min10100919.

Galindo, P. (2016). Transtension and transpression in an oblique subduction setting: Evolution of the Bahia Basin, Colombian Caribbean margin (Doctoral dissertation, Imperial College London). https://spiral.imperial.ac.uk/bitstream/10044/1/31408/1/Galindo-P-2016-PhD.pdf.

Garzón Varón, F. (2012). Modelamiento estructural de la zona límite entre la microplaca de Panamá y el bloque norandino a partir de la interpretación de imágenes de radar, cartografía geológica, anomalías de campos potenciales y líneas sísmicas. Departamento de Geociencias. https://repositorio.unal.edu.co/bitstream/handle/unal/11424/194358.2012.Parte_1.pdf?sequence=7&isAllowed=y.

Gehrels, G. (2011). Detrital zircon U‐Pb geochronology: Current methods and new opportunities. Tectonics of sedimentary basins: Recent advances, 45-62.

https://doi.org/10.1002/9781444347166.ch2.

Geoffroy, L. (2005). Volcanic passive margins. Comptes Rendus Geoscience, 337(16), 1395-1408. https://doi.org/10.1016/j.crte.2005.10.006.

Geotec Ltda. (2003) ‘Geología de los Cinturones Sinú - San Jacinto. Escala 1: 100 000. Ingeominas. Memoria Explicativa. https://recordcenter.sgc.gov.co/B4/13010000020275/documento/pdf/0101202751101000.pdf.

Ruiz, A. G., Escobar, F. H., Lara, Z. M., Buitrago, N. R., & Lozano, C. L. (2020). Monitoreo sismológico y estudio geoeléctrico somero para evaluar la geodinámica del volcán El Totumo. INGE CUC, 16(1). https://doi.org/10.17981/ingecuc.16.1.2020.03.

Gómez, J., Montes, N. E., Alcárcel, F. A., & Ceballos, J. A. (2015). Catálogo de dataciones radiométricas de Colombia en ArcGIS y Google Earth. Compilando la geología de Colombia: Una visión a 2015, 63-419. https://www2.sgc.gov.co/MGC/Paginas/pev33ch03.aspx.

Gómez, J., Montes, N. E., Nivia, A., & Diederix, H. (2015). Mapa Geológico de Colombia 2015. Escala 1:1 000 000. Servicio Geológico Colombiano. https://www2.sgc.gov.co/MGC/Paginas/mgc_1M2015.aspx

González-Morales, O., Rodríguez-Madrid, A. L., Ríos-Reyes, C. A., & Ojeda-Bueno, G. Y. (2015). Relationship between the mud organic matter content and the maximum height of diapiric domes using analog models. CT&F-Ciencia, Tecnología y Futuro, 6(2), 17-32. https://doi.org/10.29047/01225383.17.

Gonzalez-Penagos, F., Milkov, A., Lopez, E., & Duarte, L. (2019, May). Microbial and Thermogenic Petroleum Systems in the Colombian offshore Caribbean—New Geochemical Insights in an Emerging Basin. In 2019 AAPG Annual Convention and Exhibition:. https://www.researchgate.net/publication/336591592_Microbial_and_Thermogenic_Petroleum_Systems_in_the_Colombian_offshore_Caribbean_-_New_Geochemical_Insights_in_an_Emerging_Basin

Guzmán, G., Clavijo, J., Barbosa, G., & Salazar, G. (1998). Mapa Geológico de las Planchas 36-37 María La Baja, escala 1: 100.000. Ingeominas, p. 1. https://www.semanticscholar.org/paper/Geolog%C3%ADa-de-la-plancha-36-37-Mar%C3%ADa-La-Baja.-Escala-Sgc/678e10e1e2599ffafb5c2dae52ef60604bf459c6

Guzman, G., & Hernandez, R. (1995) ‘Geología de la Plancha 38 Carmen de Bolívar’. Bogotá, Colombia: Ingeominas, p. 1. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=78466&shelfbrowse_itemnumber=79287.

Guzman, G., Reyes, G. & Ibañez, D. (2003) ‘Geología de la Plancha 23 Cartagena’. Bogotá, Colombia: Ingeominas, p. 1. https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=49581&shelfbrowse_itemnumber=48928.

Hedberg, H. D. (1974). Relation of methane generation to undercompacted shales, shale diapirs, and mud volcanoes. AAPG Bulletin, 58(4), 661-673. https://doi.org/10.1306/83d91466-16c7-11d7-8645000102c1865d.

Herrera, C., & Mendoza, C. D. (2018). Evaluación geológica, geotécnica y ambiental de los fenómenos de volcanismo de lodos en la Costa Caribe Colombiana. Scientia et technica, 23(1), 104-111. https://doi.org/http://doi.org/10.22517/23447214.16061.

Hillier, S. (1993). Origin, diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine mudrocks, Orcadian Basin, Scotland. Clays and clay minerals, 41, 240-259. https://doi.org/10.1346/CCMN.1993.0410211.

Zuluaga, C., Ochoa, A., Muñoz, C., Guerereo, N., Martinez, A. M., Medina, P., ... & Zapata, V. (2009). Proyecto de Investigación: Cartografía e historia geológica de la Alta Guajira, implicaciones en la búsqueda de recursos minerales. Memoria de las planchas, 2(3), 5.

Jaboyedoff, M., Bussy, F., Kubler, B., & Thelin, P. (2001). Illite “crystallinity” revisited. Clays and clay minerals, 49(2), 156-167.https://doi.org/10.1346/CCMN.2001.0490205.

Jaramillo, C. A., Rueda, M., & Torres, V. (2011). A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia. Palynology, 35(1), 46-84. https://doi.org/10.1080/01916122.2010.515069.

Jaramillo, J. S., Cardona, A., Monsalve, G., Valencia, V., & León, S. (2019). Petrogenesis of the late Miocene Combia volcanic complex, northwestern Colombian Andes: Tectonic implication of short term and compositionally heterogeneous arc magmatism. Lithos, 330, 194-210. https://doi.org/10.1016/j.lithos.2019.02.017.

Jiang, G. J., Angelier, J., Lee, J. C., Chu, H. T., Hu, J. C., & Mu, C. H. (2011). Faulting and Mud Volcano Eruptions Inside of the Coastal Range During the 2003 M w= 6.8 Chengkung Earthquake in Eastern Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 22(5). https://doi.org/10.3319/TAO.2011.04.22.01(TT).

Kassi, A. M., Khan, S. D., Bayraktar, H., & Kasi, A. K. (2014). Newly discovered mud volcanoes in the Coastal Belt of Makran, Pakistan—tectonic implications. Arabian Journal of Geosciences, 7, 4899-4909. Available at: https://doi.org/10.1007/s12517-013-1135-7.

Kellogg, J. N., Vega, V., Stallings, T. C., & Aiken, C. L. (1995). Tectonic development of Panama, Costa Rica, and the Colombian Andes: constraints from global positioning system geodetic studies and gravity. Special Papers-Geological Society of America, 75-90. https://doi.org/10.1130/SPE295-p75.

Kellogg, J. N., & Bonini, W. E. (1982). Subduction of the Caribbean plate and basement uplifts in the overriding South American plate. Tectonics, 1(3), 251-276. https://doi.org/10.1029/TC001i003p00251.

Kennan, L., & Pindell, J. L. (2009). Dextral shear, terrane accretion and basin formation in the Northern Andes: best explained by interaction with a Pacific-derived Caribbean Plate?. Geological Society, London, Special Publications, 328(1), 487-531. https://doi.org/10.1144/SP328.20.

Kopf, A. J. (2002). Significance of mud volcanism. Reviews of geophysics, 40(2), 2-1. https://doi.org/10.1029/2000RG000093.

Laguna, O. H., MOLINA, C., Moreno, S., & Molina, R. (2008). Naturaleza mineralógica de esmectitas provenientes de la formación Honda (Noreste del Tolima Colombia). Boletín de Ciencias de la Tierra, (23), 55-68. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-36302008000200006.

Lara, M., Cardona, A., Monsalve, G., Yarce, J., Montes, C., Valencia, V., ... & López-Martínez, M. (2013). Middle Miocene near trench volcanism in northern Colombia: A record of slab tearing due to the simultaneous subduction of the Caribbean Plate under South and Central America. Journal of South American Earth Sciences, 45, 24-41. https://doi.org/10.1016/j.jsames.2012.12.006.

Laverde, F. (2000). The Caribbean Basin of Colombia, a composite Cenozoic accretionary wedge with under-explored hydrocarbon potential., VII Simposio Bolivariano - Exploración Petrolera en las Cuencas Subandinas, pp. 394–410. https://doi.org/10.3997/2214-4609-pdb.118.027eng.

León, S., Cardona, A., Parra, M., Sobel, E. R., Jaramillo, J. S., Glodny, J., ... & Pardo‐Trujillo, A. (2018). Transition from collisional to subduction‐related regimes: An example from Neogene Panama‐Nazca‐South America interactions. Tectonics, 37(1), 119-139. https://doi.org/10.1002/2017TC004785.

Leslie, S. C., & Mann, P. (2016). Giant submarine landslides on the Colombian margin and tsunami risk in the Caribbean Sea. Earth and Planetary Science Letters, 449, 382-394. https://doi.org/10.1016/j.epsl.2016.05.040.

López, E. (2019). Mass balance of sediments in the NW corner of South America. AAPG 2019 International Conference & Exhibition - Buenos Aires. https://doi.org/10.13140/RG.2.2.15165.61920.

López-Ramos, E. (2016). Hydrocarbon generation models along the basal detachment of the andean subduction zone in northern ecuador to southern colombia. CT&F-Ciencia, Tecnología y Futuro, 6(3), 25-52. https://doi.org/10.29047/01225383.08.

López-Ramos, E., Rincón-Martínez, D., Moreno, N., & Gómez, P. D. (2021). Mass balance of Neogene sediments in the Colombia Basin relationship with the evolution of the Magdalena and Cauca River basins. CT&F-Ciencia, Tecnología y Futuro, 11(1), 65-96.

https://doi.org/10.29047/01225383.297.

Di Luccio, D., Guerra, I. M. B., Valero, L. E. C., Giraldo, D. F. M., Maggi, S., & Palmisano, M. (2021). Physical and geochemical characteristics of land mud volcanoes along Colombia's Caribbean coast and their societal impacts. Science of The Total Environment, 759, 144225. https://doi.org/10.1016/j.scitotenv.2020.144225.

Lutz, R., Littke, R., Gerling, P., & Bönnemann, C. (2004). 2D numerical modelling of hydrocarbon generation in subducted sediments at the active continental margin of Costa Rica. Marine and Petroleum Geology, 21(6), 753-766. https://doi.org/10.1016/j.marpetgeo.2004.03.005.

Madonia, P., Grassa, F., Cangemi, M., & Musumeci, C. (2011). Geomorphological and geochemical characterization of the 11 August 2008 mud volcano eruption at S. Barbara village (Sicily, Italy) and its possible relationship with seismic activity. Natural Hazards and Earth System Sciences, 11(5), 1545-1557. https://doi.org/10.5194/nhess-11-1545-2011.

Manga, M., Brumm, M., & Rudolph, M. L. (2009). Earthquake triggering of mud volcanoes. Marine and Petroleum Geology, 26(9), 1785-1798. https://doi.org/10.1016/j.marpetgeo.2009.01.019.

Mantilla, A.M. (2007). Crustal Structure of the Southwestern Colombian Caribbean. Dissertation Friedrich-Schiller-Universität Jena, Insitut für Geowissenschaften. https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00014613/Mantilla/Dissertation.pdf

Martinelli, G., & Judd, A. (2004). Mud volcanoes of Italy. Geological Journal, 39(1), 49-61. https://doi.org/10.1002/gj.943.

Martinez, J. A., Castillo, J., Ortiz-Karpf, A., Rendon, L., Mosquera, J. C., & Vega, V. (2015). Deep water untested oil-play in the Magdalena Fan, Caribbean Colombian Basin. https://doi.org/10.1306/13531955m1083658.

Martinez, W., Hermoza, W., Espino, D., Carrington, J., Perez, J., Pate, K., & Rodrigo, M. (2015). Tectono-stratigraphic Evolution of the Chichibacoa–Rancherias Basin Offshore Colombia. Petroleum Geology and Potential of the Colombian Caribbean Margin, in Memoir 108. https://doi.org/10.1306/13531954m1083657.

Mazzini, A., & Etiope, G. (2017). Mud volcanism: An updated review. Earth-Science Reviews, 168, 81-112. https://doi.org/10.1016/j.earscirev.2017.03.001.

McCourt, W. J., Aspden, J. A., & Brook, M. (1984). New geological and geochronological data from the Colombian Andes: continental growth by multiple accretion. Journal of the Geological Society, 141(5), 831-845. https://doi.org/10.1144/gsjgs.141.5.0831.

Milkov, A. V., & Etiope, G. (2018). Revised genetic diagrams for natural gases based on a global dataset of> 20,000 samples. Organic geochemistry, 125, 109-120.

https://doi.org/10.1016/j.orggeochem.2018.09.002.

Milkov, A. V. (2000). Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Marine Geology, 167(1-2), 29-42. https://doi.org/10.1016/S0025-3227(00)00022-0.

Milkov, A. V. (2011). Worldwide distribution and significance of secondary microbial methane formed during petroleum biodegradation in conventional reservoirs. Organic Geochemistry, 42(2), 184-207.https://doi.org/10.1016/j.orggeochem.2010.12.003.

Milkov, A. V. (2020). Secondary microbial gas. Hydrocarbons, oils and lipids: Diversity, origin, chemistry and fate, 613-622. https://doi.org/10.1007/978-3-319-54529-5_22-1.

Mitra, R., Chakrabarti, G., & Shome, D. (2018). Geochemistry of the Palaeo–Mesoproterozoic Tadpatri shales, Cuddapah Basin, India: Implications on provenance, paleoweathering and paleoredox conditions. Acta Geochimica, 37, 715-733. https://doi.org/10.1007/s11631-017-0254-3.

Mora, H., Carvajal, J. H., Ferrero, A., León, H., & Andrade, C. A. (2018). Sobre emanaciones de gas natural y la evidencia preliminar de subsidencia en la bahía Cartagena de Indias (Colombia). Boletín Científico CIOH, 37, 35–51. https://doi.org/10.26640/22159045.2018.448.

Mora, J. A., Oncken, O., Le Breton, E., Mora, A., Veloza, G., Vélez, V., & de Freitas, M. (2018). Controls on forearc basin formation and evolution: Insights from Oligocene to Recent tectono-stratigraphy of the Lower Magdalena Valley basin of northwest Colombia. Marine and Petroleum Geology, 97, 288-310. https://doi.org/10.1016/j.marpetgeo.2018.06.032.

Mora–Bohórquez, J. A., Oncken, O., Le Breton, E., Ibañez–Mejia, M., Veloza, G., Mora, A., ... & De Freitas, M. (2020). Formation and evolution of the Lower Magdalena Valley Basin and San Jacinto fold belt of northwestern Colombia: Insights from Upper Cretaceous to recent tectono–stratigraphy. The Geology of Colombia, 3, 21-66. https://doi.org/10.32685/pub.esp.37.2019.02.

Mora-Páez, H., Kellogg, J. N., Freymueller, J. T., Mencin, D., Fernandes, R. M., Diederix, H., ... & Corchuelo-Cuervo, Y. (2019). Crustal deformation in the northern Andes–A new GPS velocity field. Journal of South American Earth Sciences, 89, 76-91. https://doi.org/10.1016/j.jsames.2018.11.002.

Naranjo-Vesga, J., Ortiz-Karpf, A., Wood, L., Jobe, Z., Paniagua-Arroyave, J. F., Shumaker, L., ... & Galindo, P. (2020). Regional controls in the distribution and morphometry of deep-water gravitational deposits along a convergent tectonic margin. Southern Caribbean of Colombia. Marine and Petroleum Geology, 121, 104639. https://doi.org/10.1016/j.marpetgeo.2020.104639.

NASA, M. (2019). AIST, Japan Spacesystems and US/Japan ASTER Science Team: ASTER Global Digital Elevation Model V003, NASA EOSDIS Land Processes DAAC [data set]. https://doi.org/https://doi.org/10.5067/ASTER/ASTGTM.003.

Oluwadebi, A.G. (2015). The Significance of Crystallinity in Hydrothermal Alteration Mapping: A Case Study of Alem Tena Area of Main Ethiopia Rift , Ethiopia. International Research Journal of Earth Sciences, 3(4), 12–17. https://www.semanticscholar.org/paper/The-Significance-of-Crystallinity-in-Hydrothermal-A/973d4073bf8014ad381adfabbfc6f7c2878ae5a4.

Ortiz Karpf, A. L. (2016). Bathymetric and substrate controls on submarine mass-transport emplacement processes and channel-levee complex evolution (Doctoral dissertation, University of Leeds). https://etheses.whiterose.ac.uk/15305/1/Ortiz-Karpf-PhD-Thesis-Final.pdf.

Planke, T.A. (2005). Constrains for Th/La on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology, 46(5), 921–944.

https://doi.org/10.1093/petrology/egi005.

Quintero Ramírez, J. D. (2012). Interpretación sísmica de volcanes de lodo en la zona occidental del abanico del delta del río Magdalena, Caribe colombiano (Bachelor's thesis, Universidad EAFIT). https://repository.eafit.edu.co/bitstream/handle/10784/736/Quintero%20Ram%C3%ADrez_Juan%20David_2012.pdf?sequence=1.

Ramirez, V., Vargas, L. S., Rubio, C., Nino, H., & Mantilla, O. (2015). Petroleum systems of the Guajira Basin, northern Colombia. AAPG Memoir 108. AAPG. 141–150. https://doi.org/10.1306/13531944M1083647.

Reed, D. L., Silver, E. A., Tagudin, J. E., Shipley, T. H., & Vrolijk, P. (1990). Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Marine and Petroleum Geology, 7(1), 44-54. https://doi.org/10.1016/0264-8172(90)90055-L.

Restrepo, I. C., Ojeda, G. Y., & Correa, I. D. (2007). Geomorfología de la plataforma somera del departamento de córdoba, costa caribe colombiana. Boletín de Ciencias de la Tierra, (20), 39-52. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-36302007000100002.

Restrepo-Pace, P. A., & Cediel, F. (2010). Northern South America basement tectonics and implications for paleocontinental reconstructions of the Americas. Journal of South American Earth Sciences, 29(4), 764-771. https://doi.org/https://doi.org/10.1016/j.jsames.2010.06.002.

Reyes, G., Barbosa, G., & Zapata, G. (1998). Geología de la Plancha 29 – 30 Arjona. Ingeominas. p (1). https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=49584.

Reyes, G., Barrera, R., & Guzman, G. (1998). Geología de la Plancha 31 Campo de la Cruz. Ingeominas. p (1). https://catalogo.sgc.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=49585

Rincón Martínez, D.A. et al. (2021) Geomorfología del fondo marino profundo en la región sur del Caribe Colombiano, Geomorfología del fondo marino profundo en la región sur del Caribe Colombiano. https://doi.org/10.29047/9789589287361.

Rodríguez, G., & Londoño, A.C. (2002) Mapa Geológico del departamento de la Guajira. Ingeominas. https://doi.org/10.13140/2.1.4852.0008

Rodríguez, I. (2020) Estructura de la parte sumergida del Cinturón de Sinú y de la parte adyacente de la cuenca de Colombia (margen caribeño al NO de Colombia). Tesis Universidad de Oviedo. https://dialnet.unirioja.es/servlet/tesis?codigo=300930

Rossello, E. A., Osorio, J. A., & López-Isaza, S. (2022). El diapirismo argilocinético del Margen Caribeño Colombiano: una revisión de sus condicionantes sedimentarios aplicados a la exploración de hidrocarburos. Boletín de Geología, 44(1), 15-48. https://doi.org/10.18273/revbol.v44n1-2022001.

Saha, S., Reza, A. H. M. S., & Roy, M. K. (2020). Illite crystallinity index an indicator of physical weathering of the sediments of the Tista River, Rangpur, Bangladesh. Int J Adv Geosci, 8(1), 27-32. https://doi.org/10.14419/ijag.v8i1.30551.

Sanabria, D. S., & Ramirez, V. O. (2018). South Caribbean Petroleum Systems: An Updated Overview. In AAPG Annual Convention and Exhibition. https://www.searchanddiscovery.com/documents/2018/11059ramirez/ndx_ramirez.pdf.

Satyana, A. H. (2008). Mud diapirs and mud volcanoes in depressions of Java to Madura: origins, natures, and implications to petroleum system. https://doi.org/10.29118/IPA.947.08.G.139.

Sautkin, A., Talukder, A. R., Comas, M. C., Soto, J. I., & Alekseev, A. (2003). Mud volcanoes in the Alboran Sea: evidence from micropaleontological and geophysical data. Marine Geology, 195(1-4), 237-261. https://doi.org/10.1016/S0025-3227(02)00691-6.

Shepard, F. P., Dill, R. F., & Heezen, B. C. (1968). Diapiric intrusions in foreset slope sediments off Magdalena delta, Colombia1. AAPG Bulletin, 52(11), 2197-2207. https://doi.org/10.1306/5D25C55F-16C1-11D7-8645000102C1865D

Silva-Arias, A., Páez-Acuña, L. A., Rincón-Martínez, D., Tamara-Guevara, J. A., Gomez-Gutierrez, P. D., López-Ramos, E., ... & Valencia, V. (2016). Basement characteristics in the lower magdalena valley and the sinú and san jacinto fold belts: evidence of a late cretaceous magmatic arc at the south of the colombian caribbean. CT&F-Ciencia, Tecnología y Futuro, 6(4), 5-36. https://doi.org/10.29047/01225383.01.

Sohn, I. G. (1961). Techniques for preparation and study of fossil ostracodes. Moore, RC & Pitrat, CW, 64-70.

Tabares, N., Soltau, J. M., & Díaz, J. (1996). Caracterización geomorfológica del sector suroccidental del mar Caribe. Boletín Científico CIOH, (17), 3-16.

https://doi.org/10.26640/22159045.80.

Tobin, H. J., Moore, J. C., Mackay, M. E., Orange, D. L., & Kulm, L. D. (1993). Fluid flow along a strike-slip fault at the toe of the Oregon accretionary prism: Implications for the geometry of frontal accretion. Geological Society of America Bulletin, 105(5), 569-582. https://doi.org/10.1130/0016-7606(1993)105<0569:FFAASS>2.3.CO;2.

Toto, E. A., & Kellogg, J. N. (1992). Structure of the Sinu-San Jacinto fold belt—an active accretionary prism in northern Colombia. Journal of South American Earth Sciences, 5(2), 211-222. https://doi.org/10.1016/0895-9811(92)90039-2.

Traverse, A. (2007). Paleopalynology. Second edition, Topics in geobiology. Springer. https://doi.org/10.1007/978-1-4020-5610-9

Trejos-Tamayo, R., Vallejo, F., Arias, V., García, C., Pardo-Trujillo, A., Bedoya, E., & Flores, J. A. (2020). Biostratigraphy of ejected material from mud volcanoes in the Caribbean region of Colombia: Contribution to the stratigraphy of Sinú Basin. Journal of South American Earth Sciences, 103, 102782. https://doi.org/10.1016/j.jsames.2020.102782.

Vargas Jiménez, C. A., & DURÁN TOVAR, J. P. (2005). State of strain and stress in northwestern of South America. Earth Sciences Research Journal, 9(1), 41-49. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-61902005000100005.

Vermeesch, P., Resentini, A., & Garzanti, E. (2016). An R package for statistical provenance analysis. Sedimentary Geology, 336, 14-25. Available at: https://doi.org/10.1016/j.sedgeo.2016.01.009.

Villagómez, D., Spikings, R., Mora, A., Guzmán, G., Ojeda, G., Cortés, E., & Van Der Lelij, R. (2011). Vertical tectonics at a continental crust‐oceanic plateau plate boundary zone: Fission track thermochronology of the Sierra Nevada de Santa Marta, Colombia. Tectonics, 30(4). https://doi.org/10.1029/2010TC002835.

Villagomez Diaz, D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America (Doctoral dissertation, University of Geneva). https://www.academia.edu/4267944/Thermochronology_geochronology_and_geochemistry_of_the_Western_and_Central_cordilleras_and_Sierra_Nevada_de_Santa_Marta_Colombia_The_tectonic_evolution_of_NW_South_America.

Weber, M. B. I., Cardona, A., Paniagua, F., Cordani, U., Sepúlveda, L., & Wilson, R. (2009). The Cabo de la Vela Mafic-Ultramafic Complex, Northeastern Colombian Caribbean region: A record of multistage evolution of a Late Cretaceous intra-oceanic arc. Geological Society, London, Special Publications, 328(1), 549-568. https://doi.org/10.1144/SP328.22.

Wu, D., Pan, J., Xia, F., Huang, G., & Lai, J. (2019). The mineral chemistry of chlorites and its relationship with uranium mineralization from Huangsha uranium mining area in the Middle Nanling Range, SE China. Minerals, 9(3), 199. https://doi.org/10.3390/min9030199.

Yamada, H., Nakazawa, H., Yoshioka, K., & Fujita, T. (1991). Smectites in the montmorillonite-beidellite series. Clay Minerals, 26(3), 359-369. https://doi.org/10.1180/claymin.1991.026.3.05.

Zuluaga, C., & Stowell, H. (2012). Late Cretaceous–Paleocene metamorphic evolution of the Sierra Nevada de Santa Marta: Implications for Caribbean geodynamic evolution. Journal of South American Earth Sciences, 34, 1-9. https://doi.org/10.1016/j.jsames.2011.10.001.

How to Cite
López- Ramos, E., González Penagos, F., Rincón Martínez, D. A., & Moreno Gómez, N. R. (2022). Detachment levels of Colombian caribbean mud volcanoes. CT&F - Ciencia, Tecnología Y Futuro, 12(2), 49–77. https://doi.org/10.29047/01225383.401

Downloads

Download data is not yet available.
Published
2022-12-30
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code