Design and evaluation of a nanofluid containing magnetite and graphene oxide nanocomposites to prevent asphaltenes precipitation into porous media

Keywords: Magnetite, asphaltene inhibition, nanoparticles, nanocomposites, porous media, iron oxide, graphene oxide, increase viscosity, coreflooding

Abstract

The precipitation and destabilization of asphaltenes in mature oil fields pose significant challenges to the oil industry, leading to damage on the producing formation and the potential blockage of production facilities. Conventional removal and inhibition methods have proven to be costly and temporary, with no guarantee of preventing new asphaltene deposits. In this study, our focus is on the design and evaluation of a stable nanofluid composed of Fe3O4 (Magnetite) and GO (Graphene Oxide) nanocomposites as an effective asphaltene stabilization agent in Colombian crude oil. By functionalizing magnetite nanoparticles with graphene oxide, we achieved a significant improvement in their stability. Various surfactants were tested to enhance the nanoparticle stability, followed by viscosity modification using commercial additives to attain the desired stability. The stability of the nanofluid was thoroughly evaluated through Oliensis, SARA, flocculation, rheology, and physicochemical analyses. Additionally, fluid-fluid and fluid-rock interaction tests were conducted under reservoir conditions. The results demonstrated an impressive 48% reduction in asphaltene-induced damage and a positive change in wettability, leading to a remarkable 38% increase in the recovery factor observed in core analyses. This study provides a promising approach to mitigate asphaltene-related challenges in mature oil fields, ensuring formation integrity and enhancing production efficiency.

References

Akbarzadeh, K., Hammami, A., Kharrat, A., Zhang, D., Allenson, S., Creek, J., ... & Solbakken, T. (2007). Asphaltenes—problematic but rich in potential. Oilfield review, 19(2), 22-43. https://www.researchgate.net/publication/279548457_Asphaltenes_-_problematic_but_rich_in_potential

Akhavan-Behabadi, M. A., Shahidi, M., & Aligoodarz, M. R. (2015). An experimental study on heat transfer and pressure drop of MWCNT–water nano-fluid inside horizontal coiled wire inserted tube. International Communications in Heat and Mass Transfer, 63, 62-72. https://doi.org/10.1016/j.icheatmasstransfer.2015.02.013

Al-Jabari, M., Nassar, N., & Husein, M. (2007, November). Separation of asphaltenes from heavy oil model-solutions by adsorption on colloidal magnetite nanoparticles. In proceeding of the International Congress of Chemistry & Environment. https://www.academia.edu/download/69366989/Separation_of_Asphaltenes_from_Heavy_Oil20210910-23838-1jqf0ti.pdf

Al-Maamari, R. S., & Buckley, J. S. (2003). Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reservoir Evaluation & Engineering, 6(04), 210-214. https://doi.org/10.2118/84938-PA

API Recomended practice 42 (RP 42) second edition, january 1977, Reaffirmed february (1990). https://studylib.net/doc/27077592/api-rp-42

Asomaning, S. (2003). Test methods for determining asphaltene stability in crude oils. Petroleum science and technology, 21(3-4), 581-590. https://doi.org/10.1081/LFT-120018540

ASTM D1370-00 Standard Test Method for Contact Compatibility Between Asphaltic Materials (Oliensis Test) https://www.astm.org/d1370-00.html

Franco, C. A., Nassar, N. N., Ruiz, M. A., Pereira-Almao, P., & Cortés, F. B. (2013). Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy & Fuels, 27(6), 2899-2907.. https://doi.org/10.1021/ef4000825

Civan, F. (2023). Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. Gulf Professional Publishing. https://doi.org/10.1016/B978-0-323-90228-1.00009-1

Cornell, R. M. (2000). Iron oxides in the laboratory: preparation and characterization. Wiley VCH.https://onlinelibrary.wiley.com/doi/book/10.1002/9783527613229?msockid=17bd9ab892f76e5b20128feb93586f2c

Cortés, F. B., Mejía, J. M., Ruiz, M. A., Benjumea, P., & Riffel, D. B. (2012). Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energy & Fuels, 26(3), 1725-1730. https://doi.org/10.1021/ef201658c

Ghloum, E. F., Al-Qahtani, M., & Al-Rashid, A. (2010). Effect of inhibitors on asphaltene precipitation for Marrat Kuwaiti reservoirs. Journal of Petroleum Science and Engineering, 70(1-2), 99-106. https://doi.org/10.1016/j.petrol.2009.10.003

Gomez Robayo, I.D. (2019). Síntesis de compositos magnéticos a base de óxido de grafeno y grafeno químicamente reducido funcionalizados con nanopartículas de magnetita y su aplicación en la remoción de colorantes orgánicos y metales tóxicos disueltos en agua. Tesis Doctoral Universidad Industrial de Santander. https://noesis.uis.edu.co/items/68ed0564-6cfe-4af7-aa1b-f192d36895a1

Haddad, Z., Abid, C., Oztop, H. F., & Mataoui, A. (2014). A review on how the researchers prepare their nanofluids. International Journal of Thermal Sciences, 76, 168-189. https://doi.org/10.1016/j.ijthermalsci.2013.08.010

Iraji, S., & Ayatollahi, S. (2019). Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach. Journal of Petroleum Exploration and Production Technology, 9(2), 1413-1422. https://doi.org/10.1007/s13202-018-0537-1

Kaggwa, A., & Carson, J. K. (2019). Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: a review of recent literature. International Nano Letters, 9(4), 277-288. https://doi.org/10.1007/s40089-019-00281-x

Kazemzadeh, Y., Eshraghi, S. E., Kazemi, K., Sourani, S., Mehrabi, M., & Ahmadi, Y. (2015). Behavior of asphaltene adsorption onto the metal oxide nanoparticle surface and its effect on heavy oil recovery. Industrial & Engineering Chemistry Research, 54(1), 233-239. https://doi.org/10.1021/ie503797g

Li, X., Chi, P., Guo, X., & Sun, Q. (2019). Effects of asphaltene concentration and asphaltene agglomeration on viscosity. Fuel, 255, 115825. https://doi.org/10.1016/j.fuel.2019.115825

Mansoori, G. A., & Elmi, A. J. S. P. (2010). Remediation of asphaltene and other heavy organic deposits in oil wells and in pipelines. Socar proceedings, 4, 12-23. https://www.researchgate.net/publication/236843886_Remediation_of_Asphaltene_and_other_Heavy_Organic_Deposits_in_Oil_Wells_and_in_Pipelines

Maqbool, T., Balgoa, A. T., & Fogler, H. S. (2009). Revisiting asphaltene precipitation from crude oils: A case of neglected kinetic effects. Energy & Fuels, 23(7), 3681-3686. https://doi.org/10.1021/ef9002236

Martínez-Guerra, E., Cifuentes-Quintal, M. E., & Coss, R. D. (2009). Grafeno: un paso hacia el futuro. Mundo nano. Revista interdisciplinaria en nanociencias y nanotecnología, 2(1), 15-23. https://doi.org/10.22201/ceiich.24485691e.2009.1.53571

Mohammadi, M., Akbari, M., Fakhroueian, Z., Bahramian, A., Azin, R., & Arya, S. (2011). Inhibition of asphaltene precipitation by TiO2, SiO2, and ZrO2 nanofluids. Energy & Fuels, 25(7), 3150-3156. https://doi.org/10.1021/ef2001635

Mohammadi, M., Dadvar, M., & Dabir, B. (2017). TiO2/SiO2 nanofluids as novel inhibitors for the stability of asphaltene particles in crude oil: Mechanistic understanding, screening, modeling, and optimization. Journal of Molecular Liquids, 238, 326-340. https://doi.org/10.1016/j.molliq.2017.05.014

Nassar, N. N. (2010). Asphaltene adsorption onto alumina nanoparticles: kinetics and thermodynamic studies. Energy & Fuels, 24(8), 4116-4122. https://doi.org/10.1021/ef100458g

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D. E., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669. https://doi.org/10.1126/science.1102896

Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A., & Tascon, J. M. (2008). Graphene oxide dispersions in organic solvents. Langmuir, 24(19), 10560-10564. https://doi.org/10.1021/la801744a

Rezvani, H., Riazi, M., Tabaei, M., Kazemzadeh, Y., & Sharifi, M. (2018). Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@ Chitosan nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 15-27. https://doi.org/10.1016/j.colsurfa.2018.02.012

Setoodeh, N., Darvishi, P., & Lashanizadegan, A. (2018). A comparative study to evaluate the performance of coated Fe3O4 nanoparticles for adsorption of asphaltene from crude oil in bench scale. Journal of Dispersion Science and Technology, 39(5), 711-720. https://doi.org/10.1080/01932691.2017.1386111

Terrones, M., Botello-Méndez, A. R., Campos-Delgado, J., López-Urías, F., Vega-Cantú, Y. I., Rodríguez-Macías, F. J., ... & Terrones, H. (2010). Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano today, 5(4), 351-372. https://doi.org/10.1016/j.nantod.2010.06.010

Yu, W., & Xie, H. (2012). A review on nanofluids: preparation, stability mechanisms, and applications. Journal of nanomaterials, 2012(1), 435873. https://doi.org/10.1155/2012/435873

How to Cite
Corredor Marín, A. F., Cardenas Montes, J. C., Ariza León , E., Mejía Ospino, E., & Rojas Plata, J. A. (2024). Design and evaluation of a nanofluid containing magnetite and graphene oxide nanocomposites to prevent asphaltenes precipitation into porous media . CT&F - Ciencia, Tecnología Y Futuro, 14(2), 79–91. https://doi.org/10.29047/01225383.694

Downloads

Download data is not yet available.
Published
2024-12-30
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Some similar items: