Low field NMR as an alternative technique to estimate of density and viscosity in toluene-heavy oil mixtures

Keywords: NMR, Heavy Oil, Liquid solvents, Viscosity, Density

Abstract

 The success of low field Nuclear Magnetic Resonance (LF-NMR) to estimate heavy oil properties depends on a good selection of mathematical models and fitting parameters. Since the correlations proposed are not universally applicable, in this study, a NMR published model was chosen and tuned to determine the density and viscosity of several mixtures of a Colombian heavy oil with toluene. The process began by mixing toluene with heavy oil to obtain several measuring points with properties similar to those of heavy oils. Each mixture was taken to a 7.5 MHz spectrometer at 40°C, where NMR parameters were acquired and used in the five pre-selected mathematical models. The reliability of viscosity measurements was analysed with the root mean square error (RMSE) and maximum absolute error (MAE). After the NLS regression process, the most accurate prediction was reached through the Burcaw model, with RMSE values of 40.55 cP. On the other hand, the density was estimated with the Wen correlation with results showing a relative error percentage of less than 1%. According to such error values, the tuned models are considered a starting point to extend the NRM technique use to other Colombian heavy oils with low uncertainty levels.

Author Biographies

Maria Sandoval, Universidad Industrial de Santander

Grupo de investigación Recobro Mejorado, Escuela de Petróleos, Universidad Industrial de Santander, Colombia

Herin Valderrama P, Universidad Industrial de Santander

Grupo de investigación Recobro Mejorado, Escuela de Petróleos, Universidad Industrial de Santander, Colombia

Miranda Sánchez M, Universidad Industrial de Santander

Grupo de investigación Recobro Mejorado, Escuela de Petróleos, Universidad Industrial de Santander,  Colombia

Daniel Molina Velasco, Universidad Industrial de Santander

Laboratorio de Resonancia Magnética Nuclear, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga, Colombia

Samuel Muñoz N, Universidad Industrial de Santander

Grupo de investigación Recobro Mejorado, Escuela de Petróleos, Universidad Industrial de Santander, Colombia.

References

Muhammad, A. & R. B. D. V. Azeredo, (2014). 1H NMR spectroscopy and low-field relaxometry for predicting viscosity and API gravity of Brazilian crude oils - A comparative study, Fuel, 130, 126–134. https://doi.org/10.1016/j.fuel.2014.04.026 .

Alboudwarej, H., Felix, J., Taylor, S., Badry, R., Bremner, C., Brough, B., & West, C. (2006). La importancia del petróleo pesado. Oilfield review, 18(2), 38-58.

Butler, R., (1991). Thermal Recovery of Oil and Bitumen. United States.

Barbosa, L. L., Montes, L. F., Kock, F. V., Morgan, V. G., Souza, A., Song, Y. Q., & Castro, E. R. (2017). Relative hydrogen index as a fast method for the simultaneous determination of physicochemical properties of petroleum fractions. Fuel, 210, 41-48. https://doi.org/10.1016/j.fuel.2017.08.057

Miller, K. A., Nelson, L. A., & Almond, R. M. (2006). Should you trust your heavy oil viscosity measurement?. Journal of Canadian Petroleum Technology, 45(04), 42–48. https://doi.org/10.2118/06-04-02

Montes, L. F., Oliveira, E. C., Neto, Á. C., Menezes, S. M., Castro, E. R., & Barbosa, L. L. (2019). Low-field NMR: A new alternative to determine the aromatic content of petroleum distillates. Fuel, 239, 413-420. https://doi.org/10.1016/j.fuel.2018.11.024

Wen, Y., Bryan, J., & Kantzas, A. (2005). Evaluation of bitumen-solvent properties using low field NMR. Journal of Canadian Petroleum Technology, 44(04)., 22–28. https://doi.org/10.2118/05-04-02

Markovic, S., Bryan, J. L., Turakhanov, A., Cheremisin, A., Mehta, S. A., & Kantzas, A., (2020). In-situ heavy oil viscosity prediction at high temperatures using low-field NMR relaxometry and nonlinear least squares, Fuel, 260(October 2019), 116328. https://doi.org/10.1016/j.fuel.2019.116328

Burcaw, L., Kleinberg, R., Bryan, J., Kantzas, A., Cheng, Y., Kharrat, A., & Badry, R. (2008, May). Improved methods for estimating the viscosity of heavy oils from magnetic resonance data. In SPWLA 49th Annual Logging Symposium. OnePetro. Austin, Texas.

Bryan, J., D. Moon, & A. Kantzas, (2005). In situ viscosity of oil sands using low field NMR, Journal of Canadian Petroleum Technology, 44(9), 23–29. https://doi.org/10.2118/05-09-02 .

Bryan, J., Kantzas, A., & Bellehumeur, C. (2005). Oil-viscosity predictions from low-field NMR measurements. SPE Reservoir Evaluation & Engineering, 8(01), 44-52. https://doi.org/10.2118/89070-PA

Morgan, V. G., Barbosa, L. L., Lacerda Jr, V., & Vinicius Ribeiro de Castro, E. (2014). Evaluation of the physicochemical properties of the postsalt crude oil for low-field NMR. Industrial & Engineering Chemistry Research, 53(21), 8881-8889. https://doi.org/10.1021/ie500761v

Barbosa, L. L., Sad, C. M., Morgan, V. G., Figueiras, P. R., & Castro, E. R. (2016). Application of low field NMR as an alternative technique to quantification of total acid number and sulphur content in petroleum from Brazilian reservoirs. Fuel, 176, 146-152. https://doi.org/10.1016/j.fuel.2016.02.085

Sandoval-Martínez, M. I. & S. F. Muñoz-Navarro, (2019). Laboratory study of cyclic liquid solvent injection process for heavy oil recovery through computed tomography, DYNA, 86(210), 81–90. https://doi.org/10.15446/dyna.v86n210.74983 .

Nunes, L. M., Cobra, P. F., Cabeça, L. F., Barbosa, L. L., & Colnago, L. A. (2012). In situ quantification of Cu (II) during an electrodeposition reaction using time-domain NMR relaxometry. Analytical chemistry, 84(15), 6351- 6354. https://doi.org/10.1021/ac3012889.

Coates, G. R., Xiao, L., & Prammer, M. G. (1999). NMR logging: principles and applications (Vol. 234). Houston: Haliburton Energy Services.

Constantino, A. F., Cubides-Román, D. C., dos Santos, R. B., Queiroz Jr, L. H., Colnago, L. A., Neto, Á. C.,& Lacerda Jr, V. (2019). Determination of physicochemical properties of biodiesel and blends using low-field NMR and multivariate calibration. Fuel, 237, 745-752. https://doi.org/10.1016/j.fuel.2018.10.045

Sandor, M., Cheng, Y., & Chen, S. (2016). Improved correlations for heavy-oil viscosity prediction with NMR. Journal of Petroleum Science and Engineering, 147, 416-426. https://doi.org/10.1016/j.petrol.2016.09.004

Curtis, C., A. Guzmán-garcía, C. Huggins, L. Knauer, M. Minner, and H. Rough, (2003). Yacimientos de petróleo pesado, Oilfield Review., 12(6), 32–55.

ASTM International. (2014). Standard test method for dynamic viscosity and density of liquids by Stabinger viscometer (and the calculation of kinematic viscosity). ASTM D7042 - 21.

Bryan, J., Kantzas, A., & Mirotchnik, K. (2003). Viscosity determination of heavy oil and bitumen using NMR relaxometry. Journal of Canadian Petroleum Technology, 42(07). 29–34. https://doi.org/10.2118/03-07-02

How to Cite
Sandoval, M., Valderrama P, H. ., Sánchez M, M. ., Molina Velasco, D. ., & Muñoz N, S. . (2021). Low field NMR as an alternative technique to estimate of density and viscosity in toluene-heavy oil mixtures. CT&F - Ciencia, Tecnología Y Futuro, 11(2), 17–26. https://doi.org/10.29047/01225383.366

Downloads

Download data is not yet available.
Published
2021-12-27

Altmetric

Funding data

Crossref Cited-by logo
QR Code

Some similar items: