Análisis detallado de un motor diésel alimentado con mezclas de combustible diésel, aceite de linaza, biodiésel y etanol en el contexto termodinámico, económico y medioambiental
Resumen
La creciente demanda de energía, unida a la volatilidad de los precios del petróleo y a los daños medioambientales causados por los gases nocivos que se producen al utilizarlo, ha impulsado a los países a explorar fuentes de energía alternativas. El sector del transporte, importante usuario final del petróleo debe adaptarse al cambiante panorama energético y optar por nuevas tecnologías para seguir siendo competitivo. El estudio realizó un minucioso análisis termodinámico para evaluar el impacto económico y medioambiental del uso de biodiésel (BD) elaborado a partir de aceite crudo de linaza prensado en frío, comercial diésel (DF) y etanol en un motor de encendido por compresión (MEC). El estudio realizó un análisis termodinámico detallado de los datos de rendimiento y emisiones registrados en un motor diésel monocilíndrico. El análisis incluyó parámetros energéticos, exergéticos, de sostenibilidad, exgoeconómicos, exgoambientales y exgoenviroeconómicos. Los resultados señalaron que la energía del combustible aumenta con la carga, alcanzando el combustible B20E5 6.887 kW al 25% de carga y 18.908 kW al 75% de carga. Se observó que el BD y los combustibles mezclados tenían una energía de combustible superior a la del DF. Al 50% de carga, los combustibles DF y B20 tienen energías de 10.765 kW y 10.888 kW, respectivamente. El análisis demuestra claramente que el DF comercial supera tanto a las mezclas binarias de combustibles DF-BD como a las mezclas DF-BD-etanol en términos de valores de eficiencia térmica y exergética. Además, el DF presenta una menor generación de entropía y destrucción de exergía que otras mezclas binarias y ternarias. A carga máxima, las eficiencias exergéticas de los combustibles DF, B20 y B20E10 fueron del 28.5%, 25.8% y 24.7%, respectivamente. Las pérdidas de exergía fueron de 10.495 kW, 12.317 kW y 13.134 kW, respectivamente, en las mismas condiciones. Las mezclas binarias y ternarias de combustible tienen un mayor coste de potencia del eje del motor debido a los caros precios de mercado del BD a base de etanol y aceite de linaza en comparación con el DF. Sin embargo, los combustibles B20 y B20E10 tienen un coste medioambiental inferior al DF, estimándose que los combustibles B20 y B20E10 son un 2,8% y un 5,3% inferiores al DF, respectivamente, a plena carga. Estos resultados demuestran las claras ventajas del uso de combustibles B20 y B20E10 sobre el DF, tanto en términos de coste como de impacto ambiental. Además, la infusión de etanol en las mezclas ternarias reduce el daño medioambiental. Este estudio ofrece una perspectiva única sobre la investigación de la energía sostenible y sirve de valiosa referencia para futuros estudios
Referencias bibliográficas
Ağbulut, Ü. (2022). Understanding the role of nanoparticle size on energy, exergy, thermoeconomic, exergoeconomic, and sustainability analyses of an IC engine: A thermodynamic approach. Fuel Processing Technology, 225, 107060. https://doi.org/10.1016/j.fuproc.2021.107060
Aghbashlo, M., Tabatabaei, M., Mohammadi, P., Khoshnevisan, B., Rajaeifar, M. A., & Pakzad, M. (2017). Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Conversion and Management, 148, 1-15. https://doi.org/10.1016/j.enconman.2017.05.048
Aghbashlo, M., Tabatabaei, M., Mohammadi, P., Pourvosoughi, N., Nikbakht, A. M., & Goli, S. A. H. (2015). Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Conversion and Management, 105, 328-337. https://doi.org/10.1016/j.enconman.2015.07.075
Almodares, A., & Hadi, M. R. (2009). Production of bioethanol from sweet sorghum: A review. African journal of agricultural research, 4(9), 772-780. https://www.researchgate.net/profile/Abas-Almodares/publication/260264303_Bioethanol_Production_from_Sweet_Sorghum/links/58595cfe08ae3852d25596aa/Bioethanol-Production-from-Sweet-Sorghum.pdf
Altarazi, Y. S., Yu, J., Gires, E., Ghafir, M. F. A., Lucas, J., & Yusaf, T. (2022). Effects of biofuel on engines performance and emission characteristics: A review. Energy, 238, 121910. https://doi.org/10.1016/j.energy.2021.121910
Altun, Ş., Bulut, H., & Öner, C. (2008). The comparison of engine performance and exhaust emission characteristics of sesame oil–diesel fuel mixture with diesel fuel in a direct injection diesel engine. Renewable Energy, 33(8), 1791-1795. https://doi.org/10.1016/j.renene.2007.11.008
Amid, S., Aghbashlo, M., Peng, W., Hajiahmad, A., Najafi, B., Ghaziaskar, H. S., ... & Tabatabaei, M. (2021). Exergetic performance evaluation of a diesel engine powered by diesel/biodiesel mixtures containing oxygenated additive ethylene glycol diacetate. Science of the Total Environment, 792, 148435. https://doi.org/10.1016/j.scitotenv.2021.148435
Ashok, B., Raj, R. T. K., Nanthagopal, K., Krishnan, R., & Subbarao, R. (2017). Lemon peel oil–A novel renewable alternative energy source for diesel engine. Energy conversion and management, 139, 110-121. https://doi.org/10.1016/j.enconman.2017.02.049
Çakmak, A., & Bilgin, A. (2017). Exergy and energy analysis with economic aspects of a diesel engine running on biodiesel-diesel fuel blends. International Journal of Exergy, 24(2-4), 151-172. https://doi.org/10.1504/IJEX.2017.087700
Can, Ö., Öztürk, E., & Yücesu, H. S. (2017). Combustion and exhaust emissions of canola biodiesel blends in a single cylinder DI diesel engine. Renewable Energy, 109, 73-82. https://doi.org/10.1016/j.renene.2017.03.017
Cavalcanti, E. J., Carvalho, M., & Ochoa, A. A. (2019). Exergoeconomic and exergoenvironmental comparison of diesel-biodiesel blends in a direct injection engine at variable loads. Energy Conversion and Management, 183, 450-461. https://doi.org/10.1016/j.enconman.2018.12.113
Channapattana, S. V., Campli, S., Madhusudhan, A., Notla, S., Arkerimath, R., & Tripathi, M. K. (2023). Energy analysis of DI-CI engine with nickel oxide nanoparticle added azadirachta indica biofuel at different static injection timing based on exergy. Energy, 267, 126622. https://doi.org/10.1016/j.energy.2023.126622
Chhetri, A. B., Watts, K. C., & Islam, M. R. (2008). Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1(1), 3-18. https://doi.org/10.3390/en1010003
Demirbas, A. (2008). Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy conversion and management, 49(8), 2106-2116. https://doi.org/10.1016/j.enconman.2008.02.020
Doğan, B., & Erol, D. (2023). The investigation of energy and exergy analyses in compression ignition engines using diesel/biodiesel fuel blends-a review. Journal of Thermal Analysis and Calorimetry, 148(5), 1765-1782. https://doi.org/10.1007/s10973-022-11862-y
Doğan, B., Cakmak, A., Yesilyurt, M. K., & Erol, D. (2020). Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: An approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses. Fuel, 275, 117973. https://doi.org/10.1016/j.fuel.2020.117973
Doğan, B., Çelik, M., Bayındırlı, C., & Erol, D. (2023). Exergy, exergoeconomic, and sustainability analyses of a diesel engine using biodiesel fuel blends containing nanoparticles. Energy, 274, 127278. https://doi.org/10.1016/j.energy.2023.127278
Doğan, B., Yeşilyurt, M. K., Erol, D., & Yaman, H. (2022). Effects of various long-chain alcohols as alternative fuel additives on exergy and cost in a spark-ignition engine. International Journal of Exergy, 38(1), 27-48. https://doi.org/10.1504/IJEX.2022.122305
EMRA, 2013. https://www.epdk.gov.tr/detay/icerik/3-0-107/yillik-sektor-raporu
Erol, D., Yeşilyurt, M. K., Yaman, H., & Doğan, B. (2023). Evaluation of the use of diesel-biodiesel-hexanol fuel blends in diesel engines with exergy analysis and sustainability index. Fuel, 337, 126892. https://doi.org/10.1016/j.fuel.2022.126892
Gad, M. S., Aziz, M. M. A., & Kayed, H. (2022). Performance, emissions and exergy analyses of adding CNTs to various biodiesel feedstocks. Propulsion and Power Research, 11(4), 511-526. https://doi.org/10.1016/j.jppr.2022.09.003
Gümüş, M., & Atmaca, M. (2013). Energy and exergy analyses applied to a CI engine fueled with diesel and natural gas. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(11), 1017-1027. https://doi.org/10.1080/15567036.2010.516312
Hoseini, S. S., Najafi, G., Ghobadian, B., Mamat, R., Sidik, N. A. C., & Azmi, W. H. (2017). The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends. Renewable and Sustainable Energy Reviews, 73, 307-331. https://doi.org/10.1016/j.rser.2017.01.088
Hoseinpour, M., Sadrnia, H., Tabasizadeh, M., & Ghobadian, B. (2017). Energy and exergy analyses of a diesel engine fueled with diesel, biodiesel-diesel blend and gasoline fumigation. Energy, 141, 2408-2420. https://doi.org/10.1016/j.energy.2017.11.131
Hosseinzadeh-Bandbafha, H., Rafiee, S., Mohammadi, P., Ghobadian, B., Lam, S. S., Tabatabaei, M., & Aghbashlo, M. (2021). Exergetic, economic, and environmental life cycle assessment analyses of a heavy-duty tractor diesel engine fueled with diesel–biodiesel-bioethanol blends. Energy Conversion and Management, 241, 114300. https://doi.org/10.1016/j.enconman.2021.114300
Jafarmadar, S., & Nemati, P. (2016). Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model. Renewable energy, 99, 514-523. https://doi.org/10.1016/j.renene.2016.07.034
John, J. A., Shahinsha, N. M., Singh, K., & Pant, R. (2022). Review on exhaust emissions of CI engine using ethanol as an alternative fuel. Materials Today: Proceedings, 69, 286-290. https://doi.org/10.1016/j.matpr.2022.08.536
Kalligeros, S., Zannikos, F., Stournas, S., Lois, E., Anastopoulos, G., Teas, C., & Sakellaropoulos, F. (2003). An investigation of using biodiesel/marine diesel blends on the performance of a stationary diesel engine. Biomass and Bioenergy, 24(2), 141-149. https://doi.org/10.1016/S0961-9534(02)00092-2
Karagoz, M., Uysal, C., Agbulut, U., & Saridemir, S. (2021). Exergetic and exergoeconomic analyses of a CI engine fueled with diesel-biodiesel blends containing various metal-oxide nanoparticles. Energy, 214, 118830.https://doi.org/10.1016/j.energy.2020.118830
Karami, R., Hoseinpour, M., Rasul, M. G., Hassan, N. M. S., & Khan, M. M. K. (2022). Exergy, energy, and emissions analyses of binary and ternary blends of seed waste biodiesel of tomato, papaya, and apricot in a diesel engine. Energy Conversion and Management: X, 16, 100288. https://doi.org/10.1016/j.ecmx.2022.100288
Karami, S., & Gharehghani, A. (2021). Effect of nano-particles concentrations on the energy and exergy efficiency improvement of indirect-injection diesel engine. Energy Reports, 7, 3273-3285. https://doi.org/10.1016/j.egyr.2021.05.050
Khoobbakht, G., Akram, A., Karimi, M., & Najafi, G. (2016). Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a DI diesel engine. Applied Thermal Engineering, 99, 720-729. https://doi.org/10.1016/j.applthermaleng.2016.01.022
Labecki, L., Cairns, A., Xia, J., Megaritis, A., Zhao, H., & Ganippa, L. C. (2012). Combustion and emission of rapeseed oil blends in diesel engine. Applied Energy, 95, 139-146. https://doi.org/10.1016/j.apenergy.2012.02.026
Lapuerta, M., Armas, O., & Rodriguez-Fernandez, J. (2008). Effect of biodiesel fuels on diesel engine emissions. Progress in energy and combustion science, 34(2), 198-223. https://doi.org/10.1016/j.pecs.2007.07.001
López, I., Quintana, C. E., Ruiz, J. J., Cruz-Peragón, F., & Dorado, M. P. (2014). Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis. Energy conversion and Management, 85, 227-233. https://doi.org/10.1016/j.enconman.2014.05.084
Martins, F., Felgueiras, C., Smitkova, M., & Caetano, N. (2019). Analysis of fossil fuel energy consumption and environmental impacts in European countries. Energies, 12(6), 964. https://doi.org/10.3390/en12060964
Masera, K., & Hossain, A. K. (2023). Advancement of biodiesel fuel quality and NOx emission control techniques. Renewable and Sustainable Energy Reviews, 178, 113235. https://doi.org/10.1016/j.rser.2023.113235
Miron, L., Chiriac, R., Brabec, M., & Bădescu, V. (2021). Ignition delay and its influence on the performance of a Diesel engine operating with different Diesel–biodiesel fuels. Energy Reports, 7, 5483-5494. https://doi.org/10.1016/j.egyr.2021.08.123
Musthafa, B., Saravanan, B., Asokan, M. A., Devendiran, S., & Venkatesan, K. (2023). Effect of ethanol, propanol and butanol on karanja biodiesel with vegetable oil fuelled in a single cylinder diesel engine. Egyptian Journal of Petroleum, 32(2), 35-40. https://doi.org/10.1016/j.ejpe.2023.05.001
Nabi, M. N., & Rasul, M. G. (2018). Influence of second generation biodiesel on engine performance, emissions, energy and exergy parameters. Energy conversion and management, 169, 326-333. https://doi.org/10.1016/j.enconman.2018.05.066
Nabi, M. N., Hustad, J. E., & Arefin, M. A. (2020). The influence of Fischer–Tropsch-biodiesel–diesel blends on energy and exergy parameters in a six-cylinder turbocharged diesel engine. Energy Reports, 6, 832-840. https://doi.org/10.1016/j.egyr.2020.04.011
Najafi, B., Faizollahzadeh Ardabili, S., Mosavi, A., Shamshirband, S., & Rabczuk, T. (2018). An intelligent artificial neural network-response surface methodology method for accessing the optimum biodiesel and diesel fuel blending conditions in a diesel engine from the viewpoint of exergy and energy analysis. Energies, 11(4), 860. https://doi.org/10.3390/en11040860
Nemati, P., Jafarmadar, S., & Taghavifar, H. (2016). Exergy analysis of biodiesel combustion in a direct injection compression ignition (CI) engine using quasi-dimensional multi-zone model. Energy, 115, 528-538. https://doi.org/10.1016/j.energy.2016.09.042
Odibi, C., Babaie, M., Zare, A., Nabi, M. N., Bodisco, T. A., & Brown, R. J. (2019). Exergy analysis of a diesel engine with waste cooking biodiesel and triacetin. Energy Conversion and Management, 198, 111912. https://doi.org/10.1016/j.enconman.2019.111912
Gazette, O. (2017). Law on Higher Education. Official Gazette RS, 88. https://www.resmigazete.gov.tr/
Örs, İ. (2014). Biyoyakıt kullanan bir dizel motorunun performans, yanma ve emisyon analizi. Performance, Combustion and Emission Analysis of a Diesel Engine Using Biofuel"," Doktora Tezi, Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Konya. https://platform.almanhal.com/Details/Thesis/2000271960?ID=4-2000271960.
Özcan, H. (2019). Energy and exergy analyses of Al2O3-diesel-biodiesel blends in a diesel engine. International Journal of Exergy, 28(1), 29-45. https://doi.org/10.1504/IJEX.2019.097270
Ozer, S., & Doğan, B. A. T. T. A. L. (2022). Thermodynamic analyzes in a compression ignition engine using fuel oil diesel fuel blends. Thermal Science, 26(4). https://doi.org/10.2298/TSCI2204079O
Panigrahi, N., Mohanty, M. K., Mishra, S. R., & Mohanty, R. C. (2018). Energy and exergy analysis of a diesel engine fuelled with diesel and simarouba biodiesel blends. Journal of the Institution of Engineers (India): Series C, 99, 9-17. https://doi.org/10.1007/s40032-016-0335-9
Panigrahi, N., Mohanty, M. K., Mishra, S. R., & Mohanty, R. C. (2014). Performance, emission, energy, and exergy analysis of a CI engine using mahua biodiesel blends with diesel. International scholarly research notices, 2014. https://doi.org/10.1155/2014/207465
Prabu, S. S., Asokan, M. A., Roy, R., Francis, S., & Sreelekh, M. K. (2017). Performance, combustion and emission characteristics of diesel engine fuelled with waste cooking oil bio-diesel/diesel blends with additives. Energy, 122, 638-648. https://doi.org/10.1016/j.energy.2017.01.119
Raja, S., Natarajan, S., Eshwar, D., & Alphin, M. S. (2022). Energy and exergy analysis and multi-objective optimization of a biodiesel fueled direct ignition engine. Results in Chemistry, 4, 100284. https://doi.org/10.1016/j.rechem.2022.100284
Ren, L., Zhou, S., Peng, T., & Ou, X. (2022). Greenhouse gas life cycle analysis of China's fuel cell medium-and heavy-duty trucks under segmented usage scenarios and vehicle types. Energy, 249, 123628. https://doi.org/10.1016/j.energy.2022.123628
Sadaf, S., Iqbal, J., Ullah, I., Bhatti, H. N., Nouren, S., Nisar, J., & Iqbal, M. (2018). Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustainable cities and society, 41, 220-226. https://doi.org/10.1016/j.scs.2018.05.037
Saidur, R., BoroumandJazi, G., Mekhilef, S., & Mohammed, H. A. (2012). A review on exergy analysis of biomass based fuels. Renewable and Sustainable Energy Reviews, 16(2), 1217-1222. https://doi.org/10.1016/j.rser.2011.07.076
Şanli, B. G., Uludamar, E., & Özcanli, M. (2019). Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel, 258, 116116. https://doi.org/10.1016/j.fuel.2019.116116
Sarıkoç, S., Örs, İ., & Ünalan, S. (2020). An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends. fuel, 268, 117321.https://doi.org/10.1016/j.fuel.2020.117321
Sayin Kul, B., & Kahraman, A. (2016). Energy and exergy analyses of a diesel engine fuelled with biodiesel-diesel blends containing 5% bioethanol. Entropy, 18(11), 387. https://doi.org/10.3390/e18110387
Sekmen, P., & Yılbaşı, Z. (2011). Application of energy and exergy analyses to a CI engine using biodiesel fuel. Mathematical and Computational Applications, 16(4), 797-808. https://doi.org/10.3390/mca16040797
Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished?. Energy policy, 37(1), 181-189. https://doi.org/10.1016/j.enpol.2008.08.016
Szabados, G., & Bereczky, Á. (2018). Experimental investigation of physicochemical properties of diesel, biodiesel and TBK-biodiesel fuels and combustion and emission analysis in CI internal combustion engine. Renewable energy, 121, 568-578. https://doi.org/10.1016/j.renene.2018.01.048
Tamilvanan, A., Balamurugan, K., & Vijayakumar, M. (2019). Effects of nano-copper additive on performance, combustion and emission characteristics of Calophyllum inophyllum biodiesel in CI engine. Journal of Thermal Analysis and Calorimetry, 136, 317-330. https://doi.org/10.1007/s10973-018-7743-4
Tan, D., Meng, Y., Tian, J., Zhang, C., Zhang, Z., Yang, G., ... & Zhao, Z. (2023). Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies. Energy, 269, 126785. https://doi.org/10.1016/j.energy.2023.126785
Tate, R. E., Watts, K. C., Allen, C. A. W., & Wilkie, K. I. (2006). The viscosities of three biodiesel fuels at temperatures up to 300 C. Fuel, 85(7-8), 1010-1015. https://doi.org/10.1016/j.fuel.2005.10.015
Tsai, J. H., Chen, S. J., Huang, K. L., Lin, W. Y., Lee, W. J., Lin, C. C., ... & Kuo, W. C. (2014). Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted PM, particulate carbon, and PAHs. Science of the total environment, 466, 195-202. https://doi.org/10.1016/j.scitotenv.2013.07.025
Uysal, C., Ağbulut, Ü., Elibol, E., Demirci, T., Karagoz, M., & Saridemir, S. (2022). Exergetic, exergoeconomic, and sustainability analyses of diesel–biodiesel fuel blends including synthesized graphene oxide nanoparticles. Fuel, 327, 125167. https://doi.org/10.1016/j.fuel.2022.125167
Vellaiyan, S., & Amirthagadeswaran, K. S. (2016). The role of water-in-diesel emulsion and its additives on diesel engine performance and emission levels: A retrospective review. Alexandria Engineering Journal, 55(3), 2463-2472. https://doi.org/10.1016/j.aej.2016.07.021
Verma, P., Sharma, M. P., & Dwivedi, G. (2016). Impact of alcohol on biodiesel production and properties. Renewable and Sustainable Energy Reviews, 56, 319-333. https://doi.org/10.1016/j.rser.2015.11.048
Withey, P., Johnston, C., & Guo, J. (2019). Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage. Renewable and Sustainable Energy Reviews, 115, 109408. https://doi.org/10.1016/j.rser.2019.109408
Yaman, H. (2022). Investigation of the effect of compression ratio on the energetic and exergetic performance of a CI engine operating with safflower oil methyl ester. Process Safety and Environmental Protection, 158, 607-624. https://doi.org/10.1016/j.psep.2021.12.014
Yesilyurt, M. K. (2020). The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel, 278, 118319. https://doi.org/10.1016/j.fuel.2020.118319
Yesilyurt, M. K., & Arslan, M. (2018). Analysis of the fuel injection pressure effects on energy and exergy efficiencies of a diesel engine operating with biodiesel. Biofuels. https://doi.org/10.1080/17597269.2018.1489674
Yılbaşı, Z. (2007). Bir dizel motorun performansının ekserji analizi ile belirlenmesi (Doctoral dissertation, Yüksek Lisans Tezi, Zonguldak Karaelmas Üniversitesi Fen Bilimleri Enstitüsü, Zonguldak).
Yildiz, I., Caliskan, H., & Mori, K. (2020). Exergy analysis and nanoparticle assessment of cooking oil biodiesel and standard diesel fueled internal combustion engine. Energy & Environment, 31(8), 1303-1317. https://doi.org/10.1177/0958305X19860234
Zaharin, M. S. M., Abdullah, N. R., Najafi, G., Sharudin, H., & Yusaf, T. (2017). Effects of physicochemical properties of biodiesel fuel blends with alcohol on diesel engine performance and exhaust emissions: A review. Renewable and Sustainable energy reviews, 79, 475-493. https://doi.org/10.1016/j.rser.2017.05.035
Zhao, D., & Guan, Y. (2022). Characterizing modal exponential growth behaviors of self-excited transverse and longitudinal thermoacoustic instabilities. Physics of Fluids, 34(2). https://doi.org/10.1063/5.0082617
Descargas
Derechos de autor 2023 CT&F - Ciencia, Tecnología y Futuro

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |
Datos de los fondos
-
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu
Números de la subvención 1919B012108735