Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross section

  • Jose-Luis Ramirez-Duque Universidad Autónoma de Occidente, Cali, Colombia
  • Mabel-Angélica Ramos-Lucumi Universidad Autónoma de Occidente, Cali, Colombia
Keywords: Computational fluid dynamic, Micro algal biomass, Shear stress


In this article, the hydrodynamic behavior of a single-phase flow in various solar collectors with different cross sections (circular, octagonal, hexagonal and square), with same hydraulic diameter and longitudinal profile was analyzed. Secondary flow, pressure drop and shear stress were evaluated, because the photosynthetic efficiency and microalgae endurance depend on these properties. These parameters were reviewed at six different culture inlet rates in the collector (from 0,25 to 0,5m/s), emphasizing in the bends regions. A higher speed and agitation was present in the square solar collector, contrary to what happened to the circular one. Despite this, the circular solar collector remains the best option for the industrial implementation phase. However, the shear stress generated in the culture -as it passes through the 180° bend of the solar collector- affects the microalgae growth, as stated in the literature.




Acién Fernández, F. G., Fernández Sevilla, J.M., Sánchez Pérez, J. A., Molina Grima, E. & Chisti, Y. (2001). Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chemical Engineering Science, 56: 2721-2732.

Alpma, E. & Long, L. N. (2005). Separated turbulent flow simulations using a Reynolds stress model and unstructured meshes. 43rd Aerospace Sciences Meeting & Exhibit, Reno, Nevada.

Aparecido, J. B. & Cotta R. M. (1990). Laminar flow inside hexagonal ducts. Computational Mechanics, 6: 93-100.

Arada, N., Pires, M. & Sequeira, A. (2007). Viscosity effects on flows of generalized Newtonian fluids through curved pipes. Computers and Mathematics with Applications, 53: 625–646.

Azzola, J.; Humphrey, J. A. C.; Iacovides, H. & Launder, B. E. (1986). Developing turbulent flow in a U-bend of circular cross-section: measurement and computation. J. Fluids Engineering, 108: 214-221.

Belt, R.J., Van't Westende, J.M.C., Portela, L.M., Mudde R.F. & Oliemans, R.V.A. (2004). Particle-driven secondary flow in turbulent horizontal pipe flows. 3rd International symposium on two-phase flow modeling and experimentation. Pisa, Italia.

Bitog, J. P; Lee, I.-B.: Lee, C.-G.; Kim, K.-S.; Hwang, H.-S.; Hong, S.-W.; Seo, I.-H.; Kwon, K.-S. & Mostafa, E. (2011). Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review. Computers and Electronics in Agriculture, 76: 131–147.

Camacho Rubio, F., Acién Fernández, F.G., Sánchez Pérez, J. A., García Camacho, F. & Molina Grima, E. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62 (1):71-86.

Chang, S. W., Chiang, K. F., & Chou, T. C. (2010). Heat transfer and pressure drop in hexagonal ducts with surface dimples. Experimental Thermal and Fluid Science, 34: 1172-1181.

Chen, W.-y., Jiang, N., An, Y.-r., & Yuan, Q.-h. (2009). Study on numerical simulation of single-phase injection device flow flied. Second International Conference on Information and Computing Science, 358-361). Manchester, United Kingdom.

Contreras, A., García, F., Molina, E. & Merchuk, J.C. (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol Bioeng, 60: 317–325.

Dyer, D. L. & Richardson, D. E. (1962). Materials of construction in algal culture. Ap-pl. Microbial., 10: 129-131.

Fernández Roque, T., Toledo Velázquez, M., & Vázquez Flores, J. F. (2006). Caída de presión debida a un flujo en torbellino. Científica, 10 (4):159-165.

García, F. & Haoulo, M. (2009). Estudio experimental de patrones de flujo bifásico aire-agua en tuberías horizontales y ligeramente inclinadas. Información Tecnológica, 20 (3):3-12.

García Camacho, F., Gallardo Rodríguez, J.J., Sánchez Mirón, A., Cerón García, M.C., Belarbi, E.H. & Molina Grima, E. (2007). Determination of shear stress thresholds in toxic dinoflagellates cultured in shaken flasks Implications in bioprocess engineering. Process Biochemistry 42: 1506–1515.

Hämäläinen, Ville. (2001). Implementing an explicit algebraic Reynolds stress model into the three-dimensional FINFLO flow solver, Report B-52.

Harun, R.; Singh, M.; Forde, G. M. & Danquah, M. K. (2011). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14: 1037-1047.

Huttl, T.J. & Friedrich, R. (2000). Influence of curvature and torsion on turbulent flow in helically coiled pipes. Int J Heat Fluid Flow, 21: 345–53.

Huttl, T.J. & Friedrich, R. (2001). Direct numerical simulation of turbulent flows in curved and helically coiled pipes. Comput Fluids, 30: 591–605.

Khalid, A., Legrand, J., Rosant, J.M. (1996). Turbulent flow induced by an impeller in a closed toroidal loop. Journal of Fluids Engineering, 118: 677-684.

Leeuwner, M.J. & Eksteen J.J. (2008). Computational fluid dynamic modeling of two phase flow in a hydrocyclone. Journal of the Southern African Institute of Mining and Metallurgy, 108: 231-236

Ma, J., Shen, X., Zhang, M. & Zhang, B. (2006). Laminar developing flow in the entrance region of rotating curved pipes. Journal of Hydrodynamics Ser.B, 18(4): 418-423.

Mata, T. M.; Martins, A. A. & Caetano, N. S. (2010) Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14: 217–232.

Mazzuca Sobczuk, T.; Garcıa Camacho, F.; Molina Grima, E. & Chisti, Y. (2006). Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum. Bioprocess Biosyst Eng, 28 (4):243–250.

Michels, M.; J. van der Goot, A.; Norsker, N.H.; Wijffels, R.H. (2010). Effects of shear stress on the microalgae Chaetoceros muelleri. Bioprocess Biosyst Eng, 33 (8):921–927.

Mitsuhashi, S.; Hosaka, K.; Tomonaga, E.; Muramatsu, H. & Tanishita, K. (1995). Effects of shear flow on photosynthesis in a dilute suspension of microalgae. Appl Microbiol Biotechnol, 42: 744-749.

Molina Grima, E., Acién Fernández, F.G., García Camacho, F. & Chisti, Y. (1998). Photobioreactors: light regime, mass transfer, and scaleup. Journal of Biotechnology, 30: 231-247.

Mott, Robert L. (2005). Applied fluid mechanics. USA: Prentice Hall.

Perner-Nochta, I., & Posten, C. (2007). Simulations of light intensity variation in photobioreactors. Journal of Biotechnology, 131 (3):276–285.

Pruvost, J.;Legrand, J. & Legentilhomme, P. (2004). Numerical investigation of bend and torus flows, part I: effect of swirl motion on flow structure in U-bend. Chemical Engineering Science, 59: 3345 – 3357.

Rawat, I.; Ranjith-Kumar, R.; Mutanda, T. & Bux, F. (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88: 3411-3424.

Rosello Sastre, R.; Csögör, Z.; Perner-Nochta, I.; Fleck-Schneider, P. & Posten, C. (2007). Scale-down of microalgae cultivations in tubular photo-bioreactors—A conceptual approach. Journal of Biotechnology, 132 (2): 127-33.

Rowe, M. (1970). Measurements and computations of flow in pipe bends. J. Fluids Mech., 43: 771-783.

Sánchez Mirón, A., García Camacho, F., Contreras Gómez, A., Molina Grima, E. & Chisti, Y. (2000). Bubble-column and airlift photobioreactors for algal culture. AIChE Journal, 46 (9):1872-1887.

Salim, S.M. & Cheah, S.C. (2009). Wall Y+ strategy for dealing with wall-bounded turbulent flows. Proceedings of the International MultiConference of Engineers and Computer Scientists.

Schneiderbauer, S., & Pirker, S. (2010). Determination of open boundary conditions for computational fluid dynamics (CFD) from interior observations. Applied Mathematical Modelling, 35 (2): 763-780.

Shalaby, H.; Pachler, K.; Wozniak, K. & Wozniak, G. (2005) Comparative study of the continuous phase flow in a cyclone separator using different turbulence models. Int. J. Numer. Meth. Fluids, 48:1175–1197.

Spolaore, P.; Joannis-Cassan, C.; Duran, E. & Isambert, A. (2006) Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101 (6): 201-211.

Santamarina, A., Weydahl, E., Siegel, J.M. & Moore, J.E. (1998) Computational analysis of flow in a curved tube model of the coronary arteries: effects of time-varying curvature. Annals of Biomedical Engineering, 26: 944–954.

Sudo, K.; Sumida, M. & Hibara, H. (2000). Experimental investigation on turbulent flow through a circular-sectioned 180° bend. Experiments in Fluids, 28 (1): 51—57

Ugwu, C.U.; Ogbonna, J.C. & Tanaka, H. (2005). Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochemistry, 40 (11): 3406–3411.

Ukeles, R. (1965). A simple method for the mass culture of marine algae. Limnology and Oceanography, 10 (3): 492-495

Wu, X. & Merchuk, J.C. (2004). Simulation of algae growth in a bench scale internal loop airlift reactor. Chemical Engineering Science, 59 (14): 2899–2912.

Wu, Z.Y. & Shi, X.M. (2008) Rheological properties of Chlorella pyrenoidosa culture grown heterotrophically in a fermentor. J Appl Phycol, 20 (3): 279–282.

Yue, P.; Dooley, J. & Feng, J.J. (2008). A general criterion for viscoelastic secondary flow in pipes of noncircular cross section. Journal Rheol., 52 (1): 315-332.+

Zhang, J., Zhang, B. & Jü, J. (2001) Fluid flow in a rotating curved rectangular duct. International Journal of Heat and Fluid Flow, 22: 563-592.
How to Cite
Ramirez-Duque, J.-L. ., & Ramos-Lucumi, M.-A. . (2011). Hydrodynamic computational evaluation in solar tubular photobioreactors bends with different cross section. CT&F - Ciencia, Tecnología Y Futuro, 4(4), 59–72. https://doi.org/10.29047/01225383.229


Download data is not yet available.
Scientific and Technological Research Articles


QR Code