Numerical simulation of high pressure burner with partially premixed flame

  • Juan-Camilo Lezcano-Benítez Universidad de Antioquía, Medellín, Colombia
  • Daniel Correa-Restrepo Universidad de Antioquía, Medellín, Colombia
  • Andrés-Adolfo Amell-Arrieta Universidad de Antioquía, Medellín, Colombia
  • Francisco-Javier Cadavid-Sierra Universidad de Antioquía, Medellín, Colombia
Keywords: Atmospheric burner, FLUENT, Internal recirculation, Semi-spherical flame, Mathematical models, Premixed flame, Regulators, High pressure, Numerical simulation


In this paper we present the results of a 2D‑axisymmetric parametric study which simulates an atmospheric premixed burner with flame at high pressure, in which methane is burned. A total of 9 simulations are performed with different regulators openings of primary and secondary air. Also, it provides a 3D simulation in which entry conditions are the profiles obtained in a 2D‑axisymmetric simulation, with the intention to note that differences are obtained between 2D and 3D simulation. The simulations are performed using the standard k-ε model for turbulence, P1 model for radiation and the Finite Rate/Eddy Dissipation model with a simplified 2-step reaction mechanism for combustion. We conclude that when the secondary air regulator is closed, combustion is incomplete. Also, the results of 2D‑axisymmetric are a good approximation in regards to 3D results.


Arrieta, A. B., Cadavid, F. S., & Arrieta, A.A. (2011). Simulación numérica de hornos de combustión equipados con quemadores radiantes. Ingeniería y Universidad, 15 (1), 9-28.

Bidi, M., Hosseini, R., &Nobari, M. (2008). Numerical analysis of methane-air combustion considering radiation effect. Energy Conversion and Management, 49, 3634-3647.

Fluent version 6.3 User’s guide (2006), Modeling species transport and finite-rate chemistry, Chapter 14. Fluent, September 2006.

Herrmann, M. (2006). Numerical simulation of turbulent Bunsen flames with a lever set flamelet model. Combustion and Flame, 145, 357-375.

Jiang B., Liang H.,Huang, G., & Li, X. (2006). Study on NOx Formation in CH4/Air Jet Combustion. Chinese Journal of Chemical Engineering, 14 (6), 723-728.

Launder, B., & Sharma, D. (1974). Application of the energy dissipation of turbulence to the calculation of flow near a spinning disc.Heat and Mass Transfer. 1 (2), 131-138.

Launder, B., & Spalding, D. (1972). Lectures in mathematical models of turbulence. London, UK: Academic press. 169.

Magnussen, B., &Hjertager, B. (1976).On mathematical models of turbulent combustion with special emphasis on soot formation and combustion. In 16th Symp.(Int'l) on Combustion. The Combustion Institute, Pittsburg, Pennsylvania. 719-729.

Patankar, S. V. (1980). Numerical heat transfer and fluid flow, Taylor and Francis. 118-120.
Roy, C., &Blottner, F. (2006). Review and assessment of turbulence models for hypersonic flows. Progress in Aerospace Sciences, 42, 469-530.

Siegel, R., & Howell, J. (2002). Thermal radiation heat transfer, (Fourth Edition). New York: Taylor and Francis. 663-678.

Westbrook, C., & Dryer, F. (1981). Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology, 27 (1-2), 31-43.
How to Cite
Lezcano-Benítez, J.-C., Correa-Restrepo, D., Amell-Arrieta, A.-A., & Cadavid-Sierra, F.-J. (2011). Numerical simulation of high pressure burner with partially premixed flame. CT&F - Ciencia, Tecnología Y Futuro, 4(4), 89-103.


Download data is not yet available.
Scientific and Technological Research Articles