Analysis of the operation of an industrial reforming furnace based on plant data and process simulation

Keywords: hydrogen; industrial unit; simulation; steam methane reforming; Aspen HYSYS, kmeans

Abstract

A fundamental process in the clean-fuels chain corresponds to the steam methane reforming (SMR), which generates the hydrogen needed for production of low-sulphur fuels. The identification of opportunities to increase hydrogen production involves the analysis of variables that affects heat supply in the SMR furnace (preheating and reaction section). This document presents the main results of an analysis of heat supply in an industrial SMR furnace based on both, data analysis and simulation with Aspen HYSYS. To such end, eight-year-process-operation data were collected and analysed with kmeans multivariate algorithm. The simulation was validated with pertinent design data and compared to process data. Next, the simulation was applied to explore the operating surface of the furnace to identify conditions with major hydrogen production. According to the results, the statistical analysis by kmeans divided the data into two operational modes that were representative for the furnace; one of them showed the major H2 production. Similarly, the simulation results suggested that the increase in H2 generation was stabilized with the highest values ​​of both heat and natural gas, tending towards a steady state value.

References

Abbas, S. Z., Dupont, V., & Mahmud, T. (2017). Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor. International journal of hydrogen Energy, 42(5), 2889-2903.https://doi.org/10.1016/j.ijhydene.2016.11.093

Amran, U. I., Ahmad, A., & Othman, M. R. (2017). Kinetic based simulation of methane steam reforming and water gas shift for hydrogen production using aspen plus. Chemical Engineering Transactions, 56, 1681-1686. https://www.researchgate.net/profile/Mohamad-Othman-7/publication/316540135_Kinetic_Based_Simulation_of_Methane_Steam_Reforming_and_Water_Gas_Shift_for_Hydrogen_Production_Using_Aspen_Plus/links/5902c96ca6fdcc8ed511a17a/Kinetic-Based-Simulation-of-Methane-Steam-Reforming-and-Water-Gas-Shift-for-Hydrogen-Production-Using-Aspen-Plus.pdf

Barelli, L., Bidini, G., Gallorini, F., & Servili, S. (2008). Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: a review. Energy, 33(4), 554-570. https://doi.org/10.1016/j.energy.2007.10.018

Box, G. E., Hunter, J. S., & Hunter, W. G. (2018). Estadística para investigadores: Diseño, innovación y descubrimiento. Reverté. https://books.google.com/books?hl=es&lr=&id=0RfeDwAAQBAJ&oi=fnd&pg=PR9&dq=Box,+G.E.,+Hunter,+J.S.,+Hunter,+W.G.+(2008).+Estad%C3%ADstica+para+investigadores:+Dise%C3%B1o,+innovaci%C3%B3n+y+descubrimiento.+Espa%C3%B1a.+Segunda+edici%C3%B3n,+editorial+Revert%C3%A9&ots=I2TAB6NZzs&sig=rmLqTM_W5P2Mk5DH6KrxFajHEp8.

Challiwala, M. S., Ghouri, M. M., Linke, P., El-Halwagi, M. M., & Elbashir, N. O. (2017). A combined thermo-kinetic analysis of various methane reforming technologies: Comparison with dry reforming. Journal of CO2 Utilization, 17, 99-111. https://doi.org/10.1016/j.jcou.2016.11.008

CONPES 3943. (2018). Política para el Mejoramiento de la Calidad del Aire. Departamento Nacional de Planeación. https://colaboracion.dnp.gov.co/CDT/Conpes/Económicos/3943.pdf

Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. BMC Bioinformatics, 23, 205. https://doi.org/10.1186/s12859-022-04675-1

DANE. (2023). https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/exportaciones

DANE a. (2023). https://www.dane.gov.co/index.php/estadisticas-por-tema/comercio-internacional/importaciones

Ehteshami, S.M.M. & Chan, S.H. (2014). Techno-economic study of hydrogen production via steam reforming of methanol, ethanol, and diesel. Energy Technology & Policy, 1(1), 15–22. https://doi.org/10.1080/23317000.2014.933087

Er-Rbib, H., Bouallou, C., & Werkoff, F. (2012). Production of synthetic gasoline and diesel fuel from dry reforming of methane. Energy Procedia, 29, 156-165. https://doi.org/10.1016/j.egypro.2012.09.020

Ewens, W. J., & Brumberg, K. (2023). Introductory Statistics for Data Analysis. Springer Nature.https://doi.org/10.1007/978-3-031-28189-1

Faheem, H. H., Tanveer, H. U., Abbas, S. Z., & Maqbool, F. (2021). Comparative study of conventional steam-methane-reforming (SMR) and auto-thermal-reforming (ATR) with their hybrid sorption enhanced (SE-SMR & SE-ATR) and environmentally benign process models for the hydrogen production. Fuel, 297, 120769. https://doi.org/10.1016/j.fuel.2021.120769

Fan, J., Zhu, L., Jiang, P., Li, L., & Liu, H. (2016). Comparative exergy analysis of chemical looping combustion thermally coupled and conventional steam methane reforming for hydrogen production. Journal of cleaner production, 131, 247-258. https://doi.org/10.1016/j.jclepro.2016.05.040

Fox, J. (2016). Using the R commander: a point-and-click interface for R. Chapman and Hall/CRC. https://www.john-fox.ca/RCommander/index.html.

Gokilavani, N., & Bharathi, B. (2021). Test case prioritization to examine software for fault detection using PCA extraction and K-means clustering with ranking. Soft Computing, 25(7), 5163–5172. https://doi.org/10.1007/s00500-020-05517-z

IEA (2019), The Future of Hydrogen, IEA, Paris https://www.iea.org/reports/the-future-of-hydrogen, Licence: CC BY 4.0. https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf (Accessed on 30 April 2024).

Iftikhar, N., Baattrup-Andersen, T., Nordbjerg, F. E., & Jeppesen, K. (2020). Outlier detection in Sensor Data Using Ensemble Learning. Procedia Computer Science, 176, 1160–1169. https://doi.org/10.1016/j.procs.2020.09.112

Jabbour, K., Massiani, P., Davidson, A., Casale, S., & El Hassan, N. (2017). Ordered mesoporous “one-pot” synthesized Ni-Mg (Ca)-Al2O3 as effective and remarkably stable catalysts for combined steam and dry reforming of methane (CSDRM). Applied Catalysis B: Environmental, 201, 527-542. https://doi.org/10.1016/j.apcatb.2016.08.009

Janbarari, S.R. & Najafabadi, A.T. (2023). Simulation and optimization of water gas shift process in ammonia plant: Maximizing CO conversion and controlling methanol by product. International Journal of Hydrogen Energy, 48, 25158-25170. https://doi.org/10.1016/j.ijhydene.2022.12.355

Jesper, M., Pag, F., Vajen, K., & Jordan, U. (2021). Annual Industrial and Commercial Heat Load Profiles: Modeling based on K-Means clustering and regression analysis. Energy Conversion and Management. X, 10, 100085. https://doi.org/10.1016/j.ecmx.2021.100085

Kumar, A., Baldea, M., & Edgar, T. F. (2016). Real-time optimization of an industrial steam-methane reformer under distributed sensing. Control Engineering Practice, 54, 140-153.https://doi.org/10.1016/j.conengprac.2016.05.010

Kumar, A., Edgar, T. F., & Baldea, M. (2017). Multi-resolution model of an industrial hydrogen plant for plantwide operational optimization with non-uniform steam-methane reformer temperature field. Computers & Chemical Engineering, 107, 271-283.https://doi.org/10.1016/j.compchemeng.2017.02.040

Lao, L., Aguirre, A., Tran, A., Wu, Z., Durand, H., & Christofides, P. D. (2016). CFD modeling and control of a steam methane reforming reactor. Chemical Engineering Science, 148, 78-92.. https://doi.org/10.1016/j.ces.2016.03.038

Li, L., Wang, Y., Sun, B., & Qian, Y. (2020). Operating Performance Assessment for Transition State of Industrial Processes. Chemical Engineering & Technology, 43(12), 2567–2575. https://doi.org/10.1002/ceat.201900657

Lund, B., & Ma, J. (2021). A review of cluster analysis techniques and their uses in library and information science research:k-meansandk-medoidsclustering. Performance Measurement and Metrics, 22(3), 161–173. https://doi.org/10.1108/pmm-05-2021-0026

MinHacienda. Definición de ingresos petroleros para efectos del funcionamiento de la regla fiscal (2022). https://www.minhacienda.gov.co/webcenter/ShowProperty?nodeId=%2FConexionContent%2FWCC_CLUSTER-197896%2F%2FidcPrimaryFile&revision=latestreleased

Minette, F., Lugo-Pimentel, M., Modroukas, D., Davis, A., Gill, R. S., Castaldi, M. J., & De Wilde, J. (2018). Intrinsic kinetics of steam methane reforming on a thin, nanostructured and adherent Ni coating. Applied Catalysis. B, Environmental, 238, 184–197. https://doi.org/10.1016/j.apcatb.2018.07.015

Moskowitz, I. H., Seider, W. D., Soroush, M., Oktem, U. G., & Arbogast, J. E. (2015). Chemical process simulation for dynamic risk analysis: a steam–methane reformer case study. Industrial & Engineering Chemistry Research, 54(16), 4347-4359. https://doi.org/10.1021/ie5038769

NDC. (2030). Actualización de la Contribución Determinada a Nivel Nacional de Colombia (NDC). Gobierno de Colombia. https://unfccc.int/sites/default/files/NDC/2022-06/NDC%20actualizada%20de%20Colombia.pdf (Accessed on 30 April 2024).

Posada, A., & Manousiouthakis, V. (2005). Heat and power integration of methane reforming based hydrogen production. Industrial & engineering chemistry research, 44(24), 9113-9119. https://doi.org/10.1021/ie049041k

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rao, S.G. & Govardhan. (2015). Performance Validation of the Modified K-means Clustering Algorithm cluster Data. International Journal of Scientific and Engineering Research, 6, 726-730.

Rodríguez, D. H. (2022). COVID-19 in Colombia: repercussions on the economy. SUMMA: Revista disciplinaria en ciencias económicas y sociales, 4(1), 4. https://doi.org/10.47666/summa.4.1.04.

Rostrup-Nielsen, J., & Christiansen, L. J. (2011). Concepts in syngas manufacture (Vol. 10). World Scientific. https://doi.org/10.1142/p717

Singh, A. P., Singh, S., Ganguly, S., & Patwardhan, A. V. (2014). Steam reforming of methane and methanol in simulated macro & micro-scale membrane reactors: Selective separation of hydrogen for optimum conversion. Journal of Natural Gas Science and Engineering, 18, 286–295. https://doi.org/10.1016/j.jngse.2014.03.008

Soloviev, S. O., Gubareni, I. V., & Orlyk, S. M. (2018). Oxidative reforming of methane on structured nickel–alumina catalysts: A review. Theoretical and Experimental Chemistry, 54, 293-315.https://doi.org/10.1007/s11237-018-9575-5

Song, C., Liu, Q., Ji, N., Kansha, Y., & Tsutsumi, A. (2015). Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Applied Energy, 154, 392–401. https://doi.org/10.1016/j.apenergy.2015.05.038

UPME. (2023). Resolución No. 000762 de 2023. https://www1.upme.gov.co/Normatividad/762_2023.pdf (accessed on 30 April 2024).

Thakare, Y. S., Bagal, S. B., Kulkarni, U. V., Doye, D. D., Sontakke, T. R., Vadivel, A., Majumdar, A. K., Hung, M., Wu, J., Chang, J., quotAn, Wang, J., Su, X., Mankad, N., Eltibi, M.F., & Ashour, W. M. (2015). Performance Evaluation of K-means Clustering Algorithm with Various Distance Metrics. International Journal of Computer Applications, 110, 12-16. https://doi.org/10.5120/19360-0929

Taborga, C. E. V., Castellón, R. V., & Taborga, O. Á. V. (2011). Determinación del tamaño muestral mediante el uso de árboles de decisión. UPB-Investig. Desarro, 11, 148-176.. https://doi.org/10.23881/idupbo.011.1-4e

Vlădan, S.I., Isopencu, G., Jinescu, C., & Mareş, M.A. (2011). Process simulation to obtain a synthesis gas with high concentration of hydrogen. U.P.B. Sci. Bull., Series B, 73, p. 29-36. http://www.scientificbulletin.upb.ro/rev_docs/arhiva/full71094.pdf

Wang, J., Wei, S., Wang, Q., & Sundén, B. (2021). Transient numerical modeling and model predictive control of an industrial-scale steam methane reforming reactor. International Journal of Hydrogen Energy, 46(29), 15241–15256. https://doi.org/10.1016/j.ijhydene.2021.02.123.

Wismann, S. T., Engbæk, J. S., Vendelbo, S. B., Bendixen, F. B., Eriksen, W. L., Aasberg-Petersen, K., … Mortensen, P. M. (2019). Electrified methane reforming: A compact approach to greener industrial hydrogen production. Science, 364(6442), 756–759. https://doi.org/10.1126/science.aaw8775.

Xu, J., & Froment, G. F. (1989). Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics. AIChE journal, 35(1), 88-96. https://doi.org/10.1002/aic.690350109

Zhu, L., Li, L., & Fan, J. (2015). A modified process for overcoming the drawbacks of conventional steam methane reforming for hydrogen production: Thermodynamic investigation. Chemical Engineering Research and Design, 104, 792-806.https://doi.org/10.1016/j.cherd.2015.10.022

How to Cite
Martínez González, O. E., Morales Medina, G., & Quiroga Becerra, H. (2024). Analysis of the operation of an industrial reforming furnace based on plant data and process simulation . CT&F - Ciencia, Tecnología Y Futuro, 14(1), 13–28. https://doi.org/10.29047/01225383.751

Downloads

Download data is not yet available.
Published
2024-06-30
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code
Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Some similar items: