Simulation tool for the analysis of in-situ combustion experiments that considers complex kinetic schemes and detailed mass transfer- theoretical analysis of the gas phase CO oxidation reaction

Keywords: In situ combustion, Reactive porous media, Enhanced oil recovery, Heavy oil, Multiphase flow, Simulation Tool

Abstract

A simulation tool was designed for analyzing various experimental setups that include the ability to model detailed chemical reaction schemes for in-situ combustion (ISC) analysis.,. The simulation tool was illustrated with a theoretical example to the extent of CO oxidation in a gaseous phase takes place during ISC. The models in the simulation tool are based on fundamental conservation laws, physical correlations for porous media properties, and property databases available in literature. Emphasis is made on the analysis of chemical reactions in the gas phase, a characteristic that may be useful when temperatures are above 700°C and oxygen, unburned hydrocarbons, and CO coexist. The three modules of the simulation tool: (i) Kinetic cell, (ii) One-dimensional reactor, and (iii) Combustion tube, can be used to represent in detail the processes taking place in the typical laboratory-scale equipment used to characterize ISC. Tools for the analysis of transport phenomena and multiphase reactions, present in all three models, can support the process of finding chemical kinetic parameters for an easier calculation of device-independent kinetic constants. Four applications have the simulator scope: (i) Analysis of reactions in the gas phase, (ii) Axial gradients in a kinetic cell, (iii) Pressure build-up in a combustion tube, and (iv) Ignition in a combustion tube. These examples highlight the importance that homogeneous reactions may have in these systems and the existence, under certain conditions, of concentration gradients that are normally neglected, and can affect the interpretation of ISC experiments.

References

Khansari, Z., Kapadia, P., Mahinpey, N., & Gates, I. D. (2014). A new reaction model for low temperature oxidation of heavy oil: Experiments and numerical modeling. Energy, 64, 419–428. https://doi.org/10.1016/j.energy.2013.11.024

Alpak, F. O., Vink, J. C., Gao, G., & Mo, W. (2013). Techniques for effective simulation, optimization, and uncertainty quantification of the in-situ upgrading process. Journal of Unconventional Oil and Gas Resources, 3–4(October), 1–14. https://doi.org/10.1016/j.juogr.2013.09.001

Dong, X., Liu, H., Chen, Z., Wu, K., Lu, N., & Zhang, Q. (2019). Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection. Applied Energy, 239(January), 1190–1211. https://doi.org/10.1016/j.apenergy.2019.01.244

Nesterov, I., Shapiro, A., & Stenby, E. (2013). Numerical analysis of a one-dimensional multicomponent model of the in-situ combustion process. Journal of Petroleum Science and Engineering, 106, 46–61. https://doi.org/10.1016/j.petrol.2013.03.022

Zhu, Z. (2011). Efficient simulation of thermal enhanced oil recovery process (Issue August). Stanford University.

Rodriguez, J. R. (2004). Experimental and analytical study to model temperature profiles and stoichiometry in oxigen enriched in situ combustion. Texas A & M University.

Sarathi, P. S. (1999). In Situ Combustion Handbook - Principles and Practice. In Combustion. National Petroleum Technology Office U. S. DEPARTMENT OF ENERGY. https://doi.org/10.2172/3175

Cazarez-Candia, O., & Centeno-Reyes, C. (2009). Prediction of Thermal Conductivity Effects on in-situ Combustion Experiments. Petroleum Science and Technology, 27(14), 1637–1651. https://doi.org/10.1080/10916460802608958

Coats, K. (1980). In-Situ Combustion Model. SPE Journal, 20(6), 533–554. https://doi.org/https://doi.org/10.2118/8394-PA

Dean, R. H., & Lo, L. L. (1988). Simulations of Naturally Fractured Reservoirs. SPE International, Society of Pretroleum Engineers, 3(02), 638–648. https://doi.org/https://doi.org/10.2118/14110-PA

Turta, A. (2013). In Situ Combustion. In James J.Sheng (Ed.), Enhanced Oil Recovery Field Case Studies (pp. 447–542). Elsevier Inc. https://doi.org/10.1016/B978-0-12-386545-8.00018-X

Lapene, A., Debenest, G., Quintard, M., Castanier, L. M., Gerritsen, M. G., & Kovscek, A. R. (2011). Kinetics oxidation of heavy oil. 1. Compositional and full equation of state model. Energy and Fuels, 25(11), 4886–4896. https://doi.org/10.1021/ef200365y

Kristensen, M. R. (2008). Development of Models and Algorithms for the Study of Reactive Porous Media Processes. Technical University of Denmark.

Chen, B., Castanier, L. M., & Kovscek, A. R. (2014). Consistency Measures for Isoconversional Interpretation of In-Situ Combustion Reaction Kinetics. Energy & Fuels, 28(2), 868–876. https://doi.org/10.1021/ef4020235

Bazargan, M. (2014). Measurement of in-situ combustion reaction kinetics with high fidelity and consistent reaction upscaling for reservoir simulation. Stanford University.

Bazargan, M., Lapene, A., Chen, B., Castanier, L. M., & Kovscek, A. R. (2013). An induction reactor for studying crude-oil oxidation relevant to in situ combustion. Review of Scientific Instruments, 84(7). https: An induction reactor for studying crude-oil oxidation relevant to in situ combustion //doi.org/10.1063/1.4815827

Belgrave, J., Moore, R., Ursenbach, M., & Bennion, D. (1993). A comprehesive approach to in situ combustion modeling. SPE Advance Technology Series, 1(1), 98–107. https://doi.org/10.2118/20250-PA

Moore, R. G., Ursenbach, M. G., Laureshen, C. J., Belgrave, J. D. M., & Mehta, S. A. (1999). Ramped Temperature Oxidation Analysis of Athabasca Oil Sands Bitumen. Journal of Canadian Petroleum Technology, 38(13), 1–10. https://doi.org/10.2118/99-13-40

López, S., & Molina, A. (2017). Criteria to Select Operational Variables That Improve the Accuracy of the Evaluation of Kinetic Parameters in a Kinetic Cell Used in the Study of in Situ Combustion. Energy and Fuels, 31(3), 2390–2397. https://doi.org/10.1021/acs.energyfuels.6b02191

Liu, D., Tang, J., Zheng, R., & Song, Q. (2020). Influence of steam on the coking characteristics of heavy oil during in situ combustion. Fuel, 264(September 2019), 116904. https://doi.org/10.1016/j.fuel.2019.116904

Kristensen, M. R., Gerritsen, M. G., Thomsen, P. G., Michelsen, M. L., & Stenby, E. H. (2008). An Equation-of-State Compositional In-Situ Combustion Model: A Study of Phase Behavior Sensitivity. Transport in Porous Media, 76(2), 219–246. https://doi.org/10.1007/s11242-008-9244-6

Kee, R. J., Rupley, F. M., Miller, J.A., Coltrin, M.E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G.H., Larson, R. S., Mitchell, R. E., Petzold, L. R., Reynolds, W. C., Caracotsios, M., Stewart, W. E., Glarborg, P., Wang, C., & Adigun, O. (2013). Chemkin collection, Reaction Design, Inc.,. Reaction Design, Inc.,.

Goodwin, D. G., Moffat, H. K., & Speth, R. L. (2016). Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes.

CMG. (2010). Advanced Process and Thermal Reservoir Simulator STARS. Computer Modelling Group.

Schlumberger. (2010). ECLIPSE Industry-Reference Reservoir Simulator Black oil, compositional, thermal, and streamline reservoir simulation.

Lie, K., Krogstad, S., Ligaarden, I. S., Natvig, J. R., Nilsen, H. M., & Skaflestad, B. (2012). Open-source MATLAB implementation of consistent discretisations on complex grids. Computational Geosciences, 16(2), 297–322. https://doi.org/10.1007/s10596-011-9244-4

Yang, X., & Gates, I. D. (2009). Combustion Kinetics of Athabasca Bitumen from 1D Combustion Tube Experiments. Natural Resources Research, 18(3), 193–211. https://doi.org/10.1007/s11053-009-9095-z

Liu, Z., Jessen, K., & Tsotsis, T. T. (2011). Optimization of in-situ combustion processes: A parameter space study towards reducing the CO2 emissions. Chemical Engineering Science, 66(12), 2723–2733. https://doi.org/10.1016/j.ces.2011.03.021

Oliveros, L. R., Yatte, F. C., Bottia Ramirez, H., & Munoz Navarro, S. F. (2013). Design Parameters And Technique Evaluation Of Combustion Processes From Tube Testing. SPE Heavy Oil Conference-Canada, 25. https://doi.org/10.2118/165458-MS

ANSYS. (2016). ANSYS Fluids - CFD Simulation Software, Academic Research.

OpenFOAM. (2016). OpenFOAM®- The Open Source Computational Fluid Dynamics (CFD) Toolbox. OpenCFD Ltd.

Gregory P. Smith, David M. Golden, Michael Frenklach, Nigel W. Moriarty, Boris Eiteneer, Mikhail Goldenberg, C. Thomas Bowman, Ronald K. Hanson, Soonho Song, William C. Gardiner, Jr., Vitali V. Lissianski, Z. Q. (n.d.). GRI-MECH 3.0.

Modeling, C. (n.d.). http://creckmodeling.chem.polimi.it/menu-kinetics.

Hincapie A, J. F. (2016). Simulation toolbox for in-situ combustion applied to experimental setups. Universidad Nacional de Colombia Sede Medellín Facultad de Minas.

Chen, B. (2012). Investigation of in-situ combustion kinetics using the isoconventional principle. Stanford University.

Cinar, M. (2011). Kinetics of crude-oil combustion in porous media interpreted using isoconversional methods. Stanford University.

Dechelette, B., Christensen, J. R., Heugas, O., Quenault, G., & Bothua, J. (2006). Air injection - Improved determination of the reaction scheme with ramped temperature experiment and numerical simulation. Journal of Canadian Petroleum Technology, 45(1), 41–47. https://doi.org/10.2118/06-01-03

Burger, J. G., & Sahuquet, B. C. (1972). Chemical Aspects of in-Situ Combustion - Heat of Combustion and Kinetics. Society of Petroleum Engineers of AIME Journal, 12(5), 410–422. https://doi.org/10.2118/3599-PA

Hoekstra, B. E. (2011). Impact of chemical reactions in the gas phase on the in-situ combustion process: An experimental study. TU Delft.

Khoshnevis Gargar, N., Achterbergh, N., Rudolph-Floter, S., & Bruining, H. (2010). In-Situ Oil Combustion: Processes Perpendicular to the Main Gas Flow Direction. Proceedings of SPE Annual Technical Conference and Exhibition. https://doi.org/10.2118/134655-MS

Ochoa, D. V. (2018). Efecto de las reacciones químicas, en fase gaseosa, sobre la producción de monóxido de carbono, durante la combustión in situ. Universidad Nacional de Colombia - Sede Medellìn.

Winter, F., Wartha, C., Löffler, G., & Hofbauer, H. (1996). The NO and N2O formation mechanism during devolatilization and char combustion under fluidized-bed conditions. Proc. Comb Inst, 26(2), 3325–3334. https://doi.org/10.1016/S0082-0784(96)80180-9

Winter, F., Löffler, G., Wartha, C., Hofbauer, H., Preto, F., & Anthony, E. J. (1999). The NO and N20 Formation Mechanism under Circulating Fluidized Bed Combustor Conditions: from the Single Particle to the Pilot-Scale. The Canadian Journal of Chemical Engineering, 77(2), 275–283. https://doi.org/10.1002/cjce.5450770212

Winter, F., Wartha, C., & Hofbauer, H. (1999). Relative importance of radicals on the N2O and NO formation and destruction paths in a quartz CFBC. Journal of Energy Resources Technology, Transactions of the ASME, 121(2), 131–136. https://doi.org/https://doi.org/10.1115/1.2795068

Moore, R. G., Laureshen, J., Ursenbach, M. G., & Mehta, S. A. (1995). In Situ Combustion Reservoirs in Canadian Heavy Oil. Fuel, 74(8), 1169–1175. https://doi.org/10.1016/0016-2361(95)00063-B

Sibbald, L., Moore, A. G., Bennion, D. W., Chmilar, B. J., & Ursenbach, M. G. (1988). In Situ Combustion Experimental Studies Using A Combustion Tube System With Stressed Core Capability. Annual Technical Meeting, 19. https://doi.org/10.2118/88-39-60

How to Cite
Hincapié Álvarez, J. F., López Gómez, S. ., & Molina, A. (2022). Simulation tool for the analysis of in-situ combustion experiments that considers complex kinetic schemes and detailed mass transfer- theoretical analysis of the gas phase CO oxidation reaction. CT&F - Ciencia, Tecnología Y Futuro, 12(1), 95–106. https://doi.org/10.29047/01225383.402

Downloads

Download data is not yet available.
Published
2022-06-29
Section
Scientific and Technological Research Articles

Altmetric

Crossref Cited-by logo
QR Code

Some similar items: